alien package
Subpackages
- alien.benchmarks
- alien.data
- Submodules
- alien.data.dataset module
Dataset
TeachableDataset
TeachableDataset.append()
TeachableDataset.extend()
TeachableDataset.from_data()
TeachableDataset.from_deepchem()
TeachableDataset.get_shuffle()
TeachableDataset.X
TeachableDataset.batch_shape
TeachableDataset.check_Xy()
TeachableDataset.feature_shape
TeachableDataset.find()
TeachableDataset.ndim
TeachableDataset.reshape()
TeachableDataset.shape
TeachableDataset.y
TeachableWrapperDataset
TeachableWrapperDataset.append()
TeachableWrapperDataset.extend()
TeachableWrapperDataset.find()
TeachableWrapperDataset.reshape_features()
TeachableWrapperDataset.reshape_batch()
TeachableWrapperDataset.shape
TeachableWrapperDataset.X
TeachableWrapperDataset.batch_shape
TeachableWrapperDataset.check_Xy()
TeachableWrapperDataset.feature_shape
TeachableWrapperDataset.from_data()
TeachableWrapperDataset.from_deepchem()
TeachableWrapperDataset.get_shuffle()
TeachableWrapperDataset.ndim
TeachableWrapperDataset.reshape()
TeachableWrapperDataset.y
ShuffledDataset
ShuffledDataset.reshuffle()
ShuffledDataset.extend_shuffle()
ShuffledDataset.find()
ShuffledDataset.X
ShuffledDataset.y
ShuffledDataset.append()
ShuffledDataset.batch_shape
ShuffledDataset.check_Xy()
ShuffledDataset.extend()
ShuffledDataset.feature_shape
ShuffledDataset.from_data()
ShuffledDataset.from_deepchem()
ShuffledDataset.get_shuffle()
ShuffledDataset.ndim
ShuffledDataset.reshape()
ShuffledDataset.reshape_batch()
ShuffledDataset.reshape_features()
ShuffledDataset.shape
compute_bdim()
ArrayDataset
ArrayDataset.append()
ArrayDataset.find()
ArrayDataset.reshape()
ArrayDataset.X
ArrayDataset.batch_shape
ArrayDataset.check_Xy()
ArrayDataset.extend()
ArrayDataset.feature_shape
ArrayDataset.from_data()
ArrayDataset.from_deepchem()
ArrayDataset.get_shuffle()
ArrayDataset.ndim
ArrayDataset.reshape_batch()
ArrayDataset.reshape_features()
ArrayDataset.shape
ArrayDataset.y
NumpyDataset
NumpyDataset.extend()
NumpyDataset.X
NumpyDataset.append()
NumpyDataset.batch_shape
NumpyDataset.check_Xy()
NumpyDataset.feature_shape
NumpyDataset.find()
NumpyDataset.from_data()
NumpyDataset.from_deepchem()
NumpyDataset.get_shuffle()
NumpyDataset.ndim
NumpyDataset.reshape()
NumpyDataset.reshape_batch()
NumpyDataset.reshape_features()
NumpyDataset.shape
NumpyDataset.y
TorchDataset
TorchDataset.extend()
TorchDataset.X
TorchDataset.append()
TorchDataset.batch_shape
TorchDataset.check_Xy()
TorchDataset.feature_shape
TorchDataset.find()
TorchDataset.from_data()
TorchDataset.from_deepchem()
TorchDataset.get_shuffle()
TorchDataset.ndim
TorchDataset.reshape()
TorchDataset.reshape_batch()
TorchDataset.reshape_features()
TorchDataset.shape
TorchDataset.y
DictDataset
DictDataset.append()
DictDataset.extend()
DictDataset.reshape()
DictDataset.find()
DictDataset.X
DictDataset.y
DictDataset.shape
DictDataset.ndim
DictDataset.batch_shape
DictDataset.check_Xy()
DictDataset.feature_shape
DictDataset.from_data()
DictDataset.from_deepchem()
DictDataset.get_shuffle()
DictDataset.reshape_batch()
DictDataset.reshape_features()
TupleDataset
TupleDataset.append()
TupleDataset.extend()
TupleDataset.reshape()
TupleDataset.find()
TupleDataset.tuple
TupleDataset.shape
TupleDataset.X
TupleDataset.batch_shape
TupleDataset.check_Xy()
TupleDataset.feature_shape
TupleDataset.from_data()
TupleDataset.from_deepchem()
TupleDataset.get_shuffle()
TupleDataset.ndim
TupleDataset.reshape_batch()
TupleDataset.reshape_features()
TupleDataset.y
- alien.data.deepchem module
DeepChemDataset
DeepChemDataset.get_featurizer()
DeepChemDataset.from_csv()
DeepChemDataset.from_df()
DeepChemDataset.X
DeepChemDataset.append()
DeepChemDataset.batch_shape
DeepChemDataset.check_Xy()
DeepChemDataset.extend()
DeepChemDataset.feature_shape
DeepChemDataset.find()
DeepChemDataset.from_data()
DeepChemDataset.from_deepchem()
DeepChemDataset.get_shuffle()
DeepChemDataset.ndim
DeepChemDataset.reshape()
DeepChemDataset.reshape_batch()
DeepChemDataset.reshape_features()
DeepChemDataset.shape
DeepChemDataset.y
as_DCDataset()
- Module contents
- alien.models
- Deep learning models
- How to choose?
- Gradient boosting models
- Other models
- Abstract base classes
Model
Regressor
CovarianceRegressor
CovarianceRegressor.covariance()
CovarianceRegressor.predict_ensemble()
CovarianceRegressor.predict_samples()
CovarianceRegressor.std_dev()
CovarianceRegressor.fit()
CovarianceRegressor.fit_model()
CovarianceRegressor.fit_uncertainty()
CovarianceRegressor.initialize()
CovarianceRegressor.load()
CovarianceRegressor.ndim
CovarianceRegressor.predict()
CovarianceRegressor.save()
CovarianceRegressor.shape
EnsembleRegressor
EnsembleRegressor.predict()
EnsembleRegressor.predict_ensemble()
EnsembleRegressor.predict_samples()
EnsembleRegressor.covariance_ensemble()
EnsembleRegressor.std_dev_ensemble()
EnsembleRegressor.covariance()
EnsembleRegressor.fit()
EnsembleRegressor.fit_model()
EnsembleRegressor.fit_uncertainty()
EnsembleRegressor.initialize()
EnsembleRegressor.load()
EnsembleRegressor.ndim
EnsembleRegressor.save()
EnsembleRegressor.shape
EnsembleRegressor.std_dev()
- alien.sample_generation
- alien.selection
Submodules
alien.classes module
- alien.classes.final(fn)[source]
Decorates a method, to prohibit subclasses from overriding it (unless the overriding method is decorated with
@override
). This prohibition is actually enforced (during subclass creation), unlike with python’styping.final
decorator, which is only used by external type checkers. Decorating with this version offinal
does also applytyping.final
, so no need to use both.
alien.decorators module
- alien.decorators.default_decorator(dec)[source]
Enhances a parametrized decorator by giving it the following functionality:
If the decorator is applied directly to a function, without any parameters specified, then it decorates the function in the usual way, with default values for the parameters.
If the decorator is passed parameters, then it returns a new decorator (with the given parameter values), able to accept a function to decorate.
In other words, if we have
@default_decorator decorator(fn, a=1, b=2, …):
…
then
@decorator def fn(…):
…
gives the usual behaviour for a decorator, but
@decorator(3, b=4) def fn(…):
…
gives us the function
decorator(fn, a=3, b=4)
- alien.decorators.sig_append(fn, name, kind=_ParameterKind.KEYWORD_ONLY, default, annotation)[source]
Appends a new parameter to the signature of
fn
.
- alien.decorators.get_Xy(fn)[source]
This decorator ensures that a method gets appropriate
X
andy
values. A method decorated in this way can assume that itsX
(orx
) andy
arguments have nontrivial values, drawn from an appropriate source.If both
X
(orx
) andy
are passed in (Nones don’t count), then all’s well. If neither are passed in, then this wrapper looks for them inself.X
andself.y
.If an
X
value can be found, but noy
value, this wrapper treatsX
as combineddata
, and tries to split it intodata.X
anddata.y
. Failing that, it tries to takeX = data[:,:-1]
andy = data[:,-1]
.If none of this can be accomplished, this wrapper raises a
ValueError
.
- class alien.decorators.RecursionContext(fn, error=None)[source]
Bases:
object
Raises an error if
fn
is called recursively.
- alien.decorators.get_defaults_from_self(fn)[source]
Decorator that enhances a method so that if arguments are not passed in, then it will look for argument values in self.’argname’
This functionality is invoked on arguments with default values None or NEED (see below; must include NEED from this module to use this). In the latter case, an exception is raised if an argument is neither passed directly nor can it be found at self.’argname’
alien.stats module
- alien.stats.multiply_std_dev(ensemble, multiple: float)[source]
Modifies an ensemble to change its standard deviation by a factor of ‘multiple’.
- Parameters:
ensemble – ensembles are over the last dimension only.
- alien.stats.augment_ensemble(preds, N: int, multiple=1.0, rng=None)[source]
Augments ensemble predictions to an ensemble of size N per variable.
Extra observations are generated from a multivariate normal distribution to have the same covariances (within the last batch dimension) as existing observations
- Parameters:
multiple – returns an ensemble with ‘multiple’ times the covariance of the original.
- alien.stats.similarity_gaussian(X, relevant_features=None, normalize=True, scale=1.0)[source]
Computes a similarity matrix from a Gaussian function of distances, as follows:
Restricts X to only look at ‘relevant_features’.
If ‘normalize’ is True, rescales the input to have standard deviation 1 in each feature, then rescales by another factor of sqrt(X.shape[-1]).
Then the distance matrix is put into a Gaussian of std dev equal to ‘scale’.
- alien.stats.covariance_from_similarity(similarity, variance)[source]
Given a similarity matrix, and a vector of variances, returns a covariance matrix, using the similarity matrix as correlations.
- alien.stats.joint_entropy(X)[source]
Not regularized. Is liable to underestimate the entropy, i.e., samples may actually be less correlated than they appear from this calculation, due to the limited size of the ensemble.
- Parameters:
X – ensemble of class predictions, of shape … x batch_size x ensemble_size
alien.utils module
- alien.utils.isint(i)[source]
Check whether i can be cast to an integer
- Parameters:
i (_type_) – _description_
- Returns:
_description_
- Return type:
_type_
- alien.utils.std_keys(d, *groups, **defaults)[source]
Standardizes keys in a dictionary. Each positional arg,
g
, apart from the first one (d
) should be an iterable of keys. Thend
is processed so that all keys ing
are replaced with the first key ing
. If more than one key ing
is ind
, then all keys ing
except the first (ind
) will be removed.
- alien.utils.multisearch(a, query, one_to_one=True)[source]
Finds the indices of multiple query values. Searches over the first axis of ‘a’, with further axes corresponding to ‘feature space’, i.e., the shape of the search terms. Return type depends on one_to_one.
- Parameters:
a – the array to search
query – an array of query values
- One_to_one:
if True, validates that each search term appears exactly once, and returns a corresponding array of indices. If False, returns a 2D array with 2nd axis of length 2, with each pair of the form (query_index, array_index)
- alien.utils.ranges(*args)[source]
Takes arguments ([start,] stop, step). Returns a list of pairs consisting of (start_i, stop_i), which together divide up range(start, stop) into chunks of size step (plus final chunk).
- class alien.utils.chunks(seq, *args)[source]
Bases:
object
Takes arguments (seq, [[start,] stop,] step). Returns an iterator which iterates over chunks of seq, of size step.
- alien.utils.frac_enum(seq, start_zero=True)[source]
Much like enumerate, returns an iterator yielding ordered pairs (t, x) where x is an element of seq and t is the fraction of the way through the sequence. if start_zero==True, the fraction starts at 0 and ends just short of 1. Otherwise, starts just over 0 and ends at 1.
- alien.utils.add_slice(s: slice, i: int) slice [source]
Returns a ‘shifted’ slice
slice(s.start + i, s.stop + i, s.step)
, unlesss
isNone
, in which case it returns a slice representing the whole window, minus a bit at the start (ifi > 0
) or the end (ifi < 0
).
- alien.utils.concatenate(*args)[source]
Concatenates a series of datasets, or one of the supported datatypes, along axis 0 (the samples axis)
- alien.utils.join(*args, make_ds=False)[source]
Concatenates a series of datasets along axis 1 (the first feature axis). Datasets must have same length, and if they are numpy or torch arrays, they must have the same shape in dimensions >= 2.
- alien.utils.zip_dict(*dicts)[source]
Similar behavior of zip(*) for dictionaries. Assumes that all dicts have the same keys. >>> zip_dict({‘a’: 1}, {‘a’: 2}) {‘a’: (1, 2)}
- Returns:
_description_
- Return type:
_type_
- class alien.utils.SelfDict(*args, default=<function no_default>, **kwargs)[source]
Bases:
dict
Subclass of dict class which allows you to refer to, eg., d[‘attr’] as d.attr and vice versa.
You can also index with lists, where d[[‘a’, ‘b’]] == {‘a’: d[‘a’], ‘b’: d[‘b’]} Similarly with pop()
- pop(k[, d]) v, remove specified key and return the corresponding value. [source]
If key is not found, default is returned if given, otherwise KeyError is raised
- clear() None. Remove all items from D.
- copy() a shallow copy of D
- fromkeys(value=None, /)
Create a new dictionary with keys from iterable and values set to value.
- get(key, default=None, /)
Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items
- keys() a set-like object providing a view on D's keys
- popitem()
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.
- setdefault(key, default=None, /)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values