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Abstract

Causal survival analysis combines survival analysis and causal inference to evaluate the
effect of a treatment or intervention on a time-to-event outcome, such as survival time. It offers
an alternative to relying solely on Cox models for assessing these effects. In this paper, we
present a comprehensive review of estimators for the average treatment effect measured with the
restricted mean survival time, including regression-based methods, weighting approaches, and
hybrid techniques. We investigate their theoretical properties and compare their performance
through extensive numerical experiments. Our analysis focuses on the finite-sample behavior
of these estimators, the influence of nuisance parameter selection, and their robustness and
stability under model misspecification. By bridging theoretical insights with practical evaluation,
we aim to equip practitioners with both state-of-the-art implementations of these methods and
practical guidelines for selecting appropriate estimators for treatment effect estimation. Among
the approaches considered, G-formula two-learners, AIPCW-AIPTW, Buckley-James estimators,
and causal survival forests emerge as particularly promising.
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1 Introduction

1.1 Context and motivations

Causal survival analysis is a growing field that integrates causal inference (D. B. Rubin 1974; Hernán
and Robins 2010) with survival analysis (Kalbfleisch and Prentice 2002) to evaluate the impact of
treatments on time-to-event outcomes, while accounting for censoring situations where only partial
information about an event’s occurrence is available.

Being a relatively new domain, the existing literature, though vast, remains fragmented. As a result,
a clear understanding of the theoretical properties of various estimators is challenging to obtain.
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Moreover, the implementation of proposed methods is limited, leaving researchers confronted with
a range of available estimators and the need to make numerous methodological decisions. There
is a pressing need for a comprehensive survey that organizes the available methods, outlines the
underlying assumptions, and provides an evaluation of estimator performance — particularly in
finite sample settings. Such a survey also has the potential to help identify remaining methodological
challenges that need to be addressed. This need becomes increasingly urgent as causal survival
analysis gains traction in both theoretical and applied domains. For instance, its applications to
external control arm analyses are particularly relevant in the context of single-arm clinical trials,
where traditional comparator arms are unavailable. Regulatory guidelines have begun to acknowledge
and support such semi-experimental approaches, reflecting the broader evolution of trial design and
therapeutic innovation in precision medicine, see for instance (European Medecines Agency 2024).

By synthesizing the theoretical foundations, assumptions, and performance of various estimators, a
survey on existing causal survival analysis methods would provide researchers and practitioners with
the necessary tools to make informed methodological choices. This is crucial for fostering robust
and reliable applications of causal survival analysis in both academic research and practical settings,
where precise and valid results are paramount.

In this paper, we focus our attention to the estimation of the Restricted Mean Survival Time (RMST),
a popular causal measure in survival analysis which offers an intuitive interpretation of the average
survival time over a specified period. In particular, we decided to not cover the estimation of Hazard
Ratio (HR), which has been prominently used but often questioned due to its potential non-causal
nature (Martinussen, Vansteelandt, and Andersen 2020). Additionally, unlike the Hazard Ratio, the
RMST has the desirable property of being a collapsible measure, meaning that the population effect
can be expressed as a weighted average of subgroup effects, with positive weights that sum to one
(Huitfeldt, Stensrud, and Suzuki 2019).

1.2 Definition of the estimand: the RMST

We set the analysis in the potential outcome framework, where a patient, described by a vector of
covariates 𝑋 ∈ ℝ𝑝, either receives a treatment (𝐴 = 1) or is in the control group (𝐴 = 0). The patient
will then survive up to a certain time 𝑇 (0) ∈ ℝ+ in the control group, or up to a time 𝑇 (1) ∈ ℝ+ in the
treatment group. In practice, we cannot simultaneously have access to 𝑇 (0) and 𝑇 (1), as one patient
is either treated or control, but only to 𝑇 defined as follows:

Assumption. (Stable Unit Treatment Value Assumption: SUTVA)

𝑇 = 𝐴𝑇 (1) + (1 − 𝐴)𝑇 (0). (1)

Due to potential censoring, the outcome 𝑇 is not completely observed. The most common form
of censoring is right-censoring (also known as type II censoring), which occurs when the event of
interest has not taken place by the end of the observation period, indicating that it may have occurred
later if the observation had continued (Turkson, Ayiah-Mensah, and Nimoh 2021). We focus in this
study on this type of censoring only and we assume that we observe ̃𝑇 = 𝑇 ∧ 𝐶 = min(𝑇 , 𝐶) for some
censoring time 𝐶 ∈ ℝ+. When an observation is censored, the observed time is equal to the censoring
time.

We also assume that we know whether an outcome is censored or not. In other words, we observe the
censoring status variable Δ = 𝕀{𝑇 𝐶}, where 𝕀{⋅} is the indicator function. Δ is 1 if the true outcome
is observed, and 0 if it is censored.

We assume observing a 𝑛-sample of variables (𝑋 , 𝐴, ̃𝑇 , Δ) stemming from an 𝑛-sample of the partially
unobservable variables (𝑋 , 𝐴, 𝑇 (0), 𝑇 (1), 𝐶). A toy exemple of such data is given in Table 1.

3



Table 1: Example of a survival dataset. In practice, only 𝑋, 𝐴, ̃𝑇 and Δ are observed.

ID

Co-
vari-
ates

Treat-
ment

Cen-
soring Status

Poten-
tial
out-
comes

True
out-
come

Ob-
served
out-
come

i 𝑋1 𝑋2 𝑋3 𝐴 𝐶 Δ 𝑇(0) 𝑇 (1) 𝑇 ̃𝑇
1 1 1.5 4 1 ? 1 ? 200 200 200
2 5 1 2 0 ? 1 100 ? 100 100
3 9 0.5 3 1 200 0 ? ? ? 200

Our aim is to estimate the Average Treatment Effect (ATE) defined as the difference between the
Restricted Mean Survival Time of the treated and controls (Royston and Parmar 2013).

Definition 1.1. (Causal effect: Difference between Restricted Mean Survival Time)

𝜃RMST = 𝔼 [𝑇 (1) ∧ 𝜏 − 𝑇 (0) ∧ 𝜏] ,

where 𝑎 ∧ 𝑏 ∶= min(𝑎, 𝑏) for 𝑎, 𝑏 ∈ ℝ.

We define the survival functions 𝑆(𝑎)(𝑡) ∶= ℙ(𝑇 (𝑎) > 𝑡) for 𝑎 ∈ {0, 1}, i.e., the probability that a treated
or non-treated individual will survive beyond a given time 𝑡. Likewise, we let 𝑆(𝑡) ∶= ℙ(𝑇 > 𝑡), and
𝑆𝐶(𝑡) ∶= ℙ(𝐶 > 𝑡). We also let 𝐺(𝑡) ∶= ℙ(𝐶 𝑡) be the left-limit of the survival function 𝑆𝐶. Because
𝑇 (𝑎) ∧ 𝜏 are non-negative random variables, one can easily express the restricted mean survival time
using the survival functions:

𝔼(𝑇 (𝑎) ∧ 𝜏 ) = ∫
∞

0
ℙ(𝑇 (𝑎) ∧ 𝜏 > 𝑡)𝑑𝑡 = ∫

𝜏

0
𝑆(𝑎)(𝑡)𝑑𝑡. (2)

Consequently, 𝜃RMST can be interpreted as the mean difference between the survival function of
treated and control until a fixed time horizon 𝜏. A difference in RMST 𝜃RMST = 10 days with 𝜏 = 200
means that, on average, the treatment increases the survival time by 10 days at 200 days. We give a
visual interpretation of RMST in Figure 1.

Although the present work focuses on the estimation of the difference in RMST, we would like
to stress that the causal effect can be assessed through other measures, such as for instance the
difference of the survival functions

𝜃SP ∶= 𝑆(1)(𝜏 ) − 𝑆(0)(𝜏 )

for some time 𝜏, see for instance (Ozenne et al. 2020). As mentionned in Section 1.1, another widely
used measure (though not necessarily causal) is the hazards ratio, defined as

𝜃HR ∶=
𝜆(1)(𝜏 )
𝜆(0)(𝜏 )

,

where the hazard function 𝜆(𝑎) is defined as

𝜆(𝑎)(𝑡) ∶= lim
ℎ→0+

ℙ(𝑇 (𝑎) ∈ [𝑡, 𝑡 + 𝑗)|𝑇 (𝑎) 𝑡)
ℎ

.

4



Figure 1: Plot of the estimated survival curves on synthetic toy-data. The 𝜃RMST at 𝜏 = 50 corresponds
to the yellow shaded area between the two survival curves. The curves have been estimated using
Kaplan-Meier estimator, see Section 2.1.

in a continuous setting, or as 𝜆(𝑎)(𝑡) ∶= ℙ(𝑇 (𝑎) = 𝑡|𝑇 (𝑎) 𝑡) when the survival times are discrete. The
hazard functions and the survival functions are linked through the identities

𝑆(𝑎)(𝑡) = exp (−Λ(𝑎)(𝑡)) where Λ(𝑎)(𝑡) ∶= ∫
𝑡

0
𝜆(𝑎)(𝑠) d𝑠, (3)

in the continuous case. The functions Λ(𝑎) are call the cumulative hazard functions. In the discrete
case, we have in turn

𝑆(𝑎)(𝑡) = ∏
𝑡𝑘𝑡

(1 − 𝜆(𝑎)(𝑡𝑘)) , (4)

where {𝑡1, … , 𝑡𝐾} are the atoms of 𝑇 (𝑎). These hazard functions are classically used to model the
survival times and the censoring times, see Section 2.2.1.

1.3 Organisation of the paper

In this paper, we detail the minimal theoretical framework that allows the analysis of established
RMST estimators in the context of both Randomized Controlled Trials (Section 2) and observational
data (Section 3). We give their statistical properties (consistency, asymptotic normality) along
with proofs when possible. We then conduct in Section 5 a numerical study of these estimators
through simulations under various experimental conditions, including independent and conditionally
independent censoring and correct and incorrect model specifications. We conclude in Section 6 with
practical recommendations on estimator selection, based on criteria such as asymptotic behavior,
computational complexity, and efficiency.

1.4 Notations

We provide in Table 2 a summary of the notation used throughout the paper.
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Table 2: Summary of the notations.

Symbol Description

𝑋 Covariates
𝐴 Treatment indicator (𝐴 = 1 for treatment, 𝐴 = 0 for control)
𝑇 Survival time
𝑇 (𝑎), 𝑎 ∈ {0, 1} Potential survival time respectively with and without treatment
𝑆(𝑎), 𝑎 ∈ {0, 1} Survival function 𝑆(𝑎)(𝑡) = ℙ(𝑇 (𝑎) > 𝑡) of the potential survival times
𝜆(𝑎), 𝑎 ∈ {0, 1} Hazard function 𝜆(𝑎)(𝑡) = limℎ→0+ ℙ(𝑇 (𝑎) ∈ [𝑡, 𝑡 + ℎ)|𝑇 (𝑎) 𝑡)/ℎ of the

potential survival times
Λ(𝑎), 𝑎 ∈ {0, 1} Cumulative hazard function of the potential survival times
𝐶 Censoring time
𝑆𝐶 Survival function 𝑆𝐶(𝑡) = ℙ(𝐶 > 𝑡) of the censoring time
𝐺 Left-limit of the survival function 𝐺(𝑡) = ℙ(𝐶 𝑡) of the censoring time
̃𝑇 Observed time (𝑇 ∧ 𝐶)

Δ Censoring status 𝕀{𝑇 𝐶}
Δ𝜏 Censoring status of the restricted time Δ𝜏 = max{Δ, 𝕀{ ̃𝑇 𝜏 }}
{𝑡1, 𝑡2, … , 𝑡𝐾} Discrete times
𝑒(𝑥) Propensity score 𝔼[𝐴|𝑋 = 𝑥]
𝜇(𝑥, 𝑎), 𝑎 ∈ {0, 1} 𝔼[𝑇 ∧ 𝜏 ∣ 𝑋 = 𝑥, 𝐴 = 𝑎]
𝑆(𝑡|𝑥, 𝑎), 𝑎 ∈ {0, 1} Conditional survival function, ℙ(𝑇 > 𝑡|𝑋 = 𝑥, 𝐴 = 𝑎).
𝜆(𝑎)(𝑡|𝑥), 𝑎 ∈ {0, 1} Conditional hazard functions of the potential survival times
𝐺(𝑡|𝑥, 𝑎), 𝑎 ∈ {0, 1} left-limit of the conditional survival function of the censoring

ℙ(𝐶 𝑡|𝑋 = 𝑥, 𝐴 = 𝑎)
𝑄𝑆(𝑡|𝑥, 𝑎), 𝑎 ∈ {0, 1} 𝔼[𝑇 ∧ 𝜏 ∣ 𝑋 = 𝑥, 𝐴 = 𝑎, 𝑇 ∧ 𝜏 > 𝑡]

2 Causal survival analysis in Randomized Controlled Trials

Randomized Controlled Trials (RCTs) are the gold standard for establishing the effect of a treatment
on an outcome, because treatment allocation is controlled through randomization, which ensures
(asymptotically) the balance of covariates between treated and controls, and thus avoids problems
of confounding between treatment groups. The core assumption in a classical RCT is the random
assignment of the treatment (D. B. Rubin 1974).

Assumption. (Random treatment assignment) There holds:

𝐴 ⟂⟂ 𝑇(0), 𝑇 (1), 𝑋 (5)

We also assume that there is a positive probability of receiving the treatment, which we rephrase
under the following assumption.

Assumption. (Trial positivity)
0 < ℙ(𝐴 = 1) < 1 (6)

Under Assumptions 5 and 6, classical causal identifiability equations can be written to express 𝜃RMST
without potential outcomes.

𝜃RMST = 𝔼[𝑇 (1) ∧ 𝜏 − 𝑇 (0) ∧ 𝜏]
= 𝔼[𝑇 (1) ∧ 𝜏 |𝐴 = 1] − 𝔼[𝑇 (0) ∧ 𝜏 |𝐴 = 0] (Random treatment assignment)

= 𝔼[𝑇 ∧ 𝜏 |𝐴 = 1] − 𝔼[𝑇 ∧ 𝜏 |𝐴 = 0]. (SUTVA)

(7)
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However, Equation 7 still depends on 𝑇, which remains only partially observed due to censoring. To
ensure that censoring does not compromise the identifiability of treatment effects, we must impose
certain assumptions on the censoring process, standards in survival analysis, namely, independent
censoring and conditionally independent censoring. These assumptions lead to different estimation
approaches. We focus on two strategies: those that aim to directly estimate 𝔼[𝑇 ∧ 𝜏 |𝐴 = 𝑎] directly
(e.g., through censoring-unbiased transformations, see Section 2.2), and those that first estimate
the survival curves to derive RMST via Equation 2 (such as the Kaplan-Meier estimator and all its
variants, see the next Section).

2.1 Independent censoring: the Kaplan-Meier estimator

In a first approach, one might assume that the censoring times are independent from the rest of the
variables.

Assumption. (Independent censoring)

𝐶 ⟂⟂ 𝑇(0), 𝑇 (1), 𝑋 , 𝐴. (8)

Under Equation 8, subjects censored at time 𝑡 are representative of all subjects who remain at risk
at time 𝑡. Figure 2 represents the causal graph when the study is randomized and outcomes are
observed under independent censoring.

C

X

A T

∆

T̃

Causal Survival

Figure 2: Causal graph in RCT survival data with independent censoring.

We also assume that there is no almost-sure upper bound on the censoring time before 𝜏, which we
rephrase under the following assumption.

Assumption. (Positivity of the censoring process) There exists 𝜀 > 0 such that

𝐺(𝑡) 𝜀 for all 𝑡 ∈ [0, 𝜏 ). (9)

If indeed it was the case that ℙ(𝐶 < 𝑡) = 1 for some 𝑡 < 𝜏, then we would not be able to infer anything
on the survival function on the interval [𝑡, 𝜏 ] as all observation times ̃𝑇𝑖 would be in [0, 𝑡] almost
surely. In practice, adjusting the threshold time 𝜏 can help satisfy the positivity assumption. For
instance, in a clinical study, if a subgroup of patients has zero probability of remaining uncensored
at a given time, 𝜏 can be modified to ensure that participants have a feasible chance of remaining
uncensored up to the revised threshold.

The two Assumptions 8 and 9 together allow the distributions of 𝑇 (𝑎) to be identifiable, in the sense
that there exists an identity that expresses 𝑆(𝑎) as a function of the joint distribution of ( ̃𝑇 , Δ, 𝐴 = 𝑎),
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see for instance Ebrahimi, Molefe, and Ying (2003) for such a formula in a non-causal framework. This
enables several estimation strategies, the most well-known being the Kaplan-Meier product-limit
estimator.

To motivate the definition of the latter and explicit the identifiability identity, we set the analysis in
the discrete case. We let {𝑡𝑘}𝑘1 be a set of positive and increasing times and assume that 𝑇 ∈ {𝑡𝑘}𝑘1
almost surely. Then for any 𝑡 ∈ [0, 𝜏], it holds, letting 𝑡0 = 0 by convention, thanks to Equation 4,

𝑆(𝑡|𝐴 = 𝑎) = ℙ(𝑇 > 𝑡|𝐴 = 𝑎) = ∏
𝑡𝑘𝑡

(1 − ℙ(𝑇 = 𝑡𝑘|𝑇 > 𝑡𝑘−1, 𝐴 = 𝑎))

= ∏
𝑡𝑘𝑡

(1 −
ℙ(𝑇 = 𝑡𝑘, 𝐴 = 𝑎)
ℙ(𝑇 𝑡𝑘, 𝐴 = 𝑎) )

.

Using Assumptions 8 and 9, we find that

ℙ(𝑇 = 𝑡𝑘, 𝐴 = 𝑎)
ℙ(𝑇 𝑡𝑘, 𝐴 = 𝑎)

=
ℙ(𝑇 = 𝑡𝑘, 𝐶 𝑡𝑘, 𝐴 = 𝑎)
ℙ(𝑇 𝑡𝑘, 𝐶 𝑡𝑘, 𝐴 = 𝑎)

=
ℙ( ̃𝑇 = 𝑡𝑘, Δ = 1, 𝐴 = 𝑎)

ℙ( ̃𝑇 𝑡𝑘, 𝐴 = 𝑎)
, (10)

yielding the final identity

𝑆(𝑡|𝐴 = 𝑎) = ∏
𝑡𝑘𝑡 (

1 −
ℙ( ̃𝑇 = 𝑡𝑘, Δ = 1, 𝐴 = 𝑎)

ℙ( ̃𝑇 𝑡𝑘, 𝐴 = 𝑎) )
. (11)

Notice that the right hand side only depends on the distribution of the observed tuple (𝐴, ̃𝑇 , Δ). This
last equation suggests in turn to introduce the quantities

𝐷𝑘(𝑎) ∶=
𝑛
∑
𝑖=1

𝕀( ̃𝑇𝑖 = 𝑡𝑘, Δ𝑖 = 1, 𝐴 = 𝑎) and 𝑁𝑘(𝑎) ∶=
𝑛
∑
𝑖=1

𝕀( ̃𝑇𝑖 𝑡𝑘, 𝐴 = 𝑎), (12)

which correspond respectively to the number of deaths 𝐷𝑘(𝑎) and of individuals at risk 𝑁𝑘(𝑎) at time
𝑡𝑘 in the treated group (a=1) or in the control group (a=0).

Definition 2.1. (Kaplan-Meier estimator, Kaplan and Meier (1958)) With 𝐷𝑘(𝑎) and 𝑁𝑘(𝑎) defined in
Equation 12, we let

𝑆KM(𝑡|𝐴 = 𝑎) ∶= ∏
𝑡𝑘𝑡

(1 −
𝐷𝑘(𝑎)
𝑁𝑘(𝑎))

. (13)

The assiociated RMST estimator is then simply defined as

𝜃KM = ∫
𝜏

0
𝑆𝐾𝑀(𝑡|𝐴 = 1) − 𝑆𝐾𝑀(𝑡|𝐴 = 0)𝑑𝑡. (14)

The Kaplan-Meier estimator is the Maximum Likelihood Estimator (MLE) of the survival functions,
see for instance Kaplan and Meier (1958). Furthermore, because 𝐷𝑘(𝑎) and 𝑁𝑘(𝑎) are sums of i.i.d.
random variables, the Kaplan-Meier estimator inherits some convenient statistical properties.

Proposition 2.1. Under Assumptions 1, 5, 6, 8 and 9, and for all 𝑡 ∈ [0, 𝜏], the estimator 𝑆KM(𝑡|𝐴 = 𝑎)
of 𝑆(𝑎)(𝑡) is strongly consistent and admits the following bounds for its bias:

0 𝑆(𝑎)(𝑡) − 𝔼[𝑆KM(𝑡|𝐴 = 𝑎)] 𝑂(ℙ(𝑁𝑘(𝑎) = 0)),

where 𝑘 is the greatest time 𝑡𝑘 such that 𝑡 𝑡𝑘.

8



Gill (1983) gives a more precise lower-bound on the bias in the case of continuous distributions,
which was subsequently refined by Zhou (1988). The bound we give, although slightly looser, still
exhibits the same asymptotic regime. In particular, as soon as 𝑆(𝑎)(𝑡) > 0 (and Assumption 9 holds),
then the bias decays exponentially fast towards 0. We give in Section 8.1 a simple proof of our bound
is our context.

Proposition 2.2. Under Assumptions 1, 5, 6, 8 and 9, and for all 𝑡 ∈ [0, 𝜏], 𝑆KM(𝑡|𝐴 = 𝑎) is asymptoti-
cally normal and √𝑛 (𝑆KM(𝑡|𝐴 = 𝑎) − 𝑆(𝑎)(𝑡)) converges in distribution towards a centered Gaussian of
variance

𝑉KM(𝑡|𝐴 = 𝑎) ∶= 𝑆(𝑎)(𝑡)2∑
𝑡𝑘𝑡

1 − 𝑠𝑘(𝑎)
𝑠𝑘(𝑎)𝑟𝑘(𝑎)

,

where 𝑠𝑘(𝑎) = 𝑆(𝑎)(𝑡𝑘)/𝑆(𝑎)(𝑡𝑘−1) and 𝑟𝑘(𝑎) = ℙ( ̃𝑇 𝑡𝑘, 𝐴 = 𝑎).

The proof of Proposition 2.2 can be found in Section 8.1. Because 𝐷𝑘(𝑎)/𝑁𝑘(𝑎) is a natural estimator
of 1 − 𝑠𝑘(𝑎) and,

1
𝑛
𝑁𝑘(𝑎) a natural estimator for 𝑟𝑘(𝑎), the asymptotic variance of the Kaplan-Meier

estimator can be estimated with the so-called Greenwood formula, as already derived heuristically in
Kaplan and Meier (1958):

V̂ar (𝑆KM(𝑡|𝐴 = 𝑎)) ∶= 𝑆KM(𝑡|𝐴 = 𝑎)2∑
𝑡𝑘𝑡

𝐷𝑘(𝑎)
𝑁𝑘(𝑎)(𝑁𝑘(𝑎) − 𝐷𝑘(𝑎))

. (15)

We finally mention that the KM estimator as defined in Definition 2.1 still makes sense in a non-
discrete setting, and one only needs to replace the fixed grid {𝑡𝑘} by the values at which we observed
an event ( ̃𝑇𝑖 = 𝑡𝑘, Δ𝑖 = 1). We refer to Breslow and Crowley (1974) for a study of this estimator in the
continuous case and to Aalen, Borgan, and Gjessing (2008), Sec 3.2 for a general study of the KM
estimator through the prism of point processes.

2.2 Conditionally independent censoring

An alternative hypothesis in survival analysis that relaxes the assumption of independent censoring
is conditionally independent censoring, also refered sometimes as informative censoring. It allows
to model more realistic censoring processes, in particular in situations where there are reasons to
believe that 𝐶 may be dependent from 𝐴 and 𝑋 (for instance, if patient is more like to leave the study
when treated because of side-effects of the treatment).

Assumption. (Conditionally independent censoring)

𝐶 ⟂⟂ 𝑇(0), 𝑇 (1) | 𝑋 , 𝐴 (16)

Under Equation 16, subjects within a same stratum defined by 𝑋 = 𝑥 and 𝐴 = 𝑎 have equal probability
of censoring at time 𝑡, for all 𝑡. In case of conditionally independent censoring, we also need to
assume that all subjects have a positive probability to remain uncensored at their time-to-event.

Assumption. (Positivity / Overlap for censoring) There exists 𝜀 > 0 such that for all 𝑡 ∈ [0, 𝜏 ), it
almost surely holds

𝐺(𝑡|𝐴, 𝑋 ) 𝜀. (17)

Figure 3 represents the causal graph when the study is randomized with conditionally independent
censoring.

Under dependent censoring, the Kaplan-Meier estimator as defined in Definition 2.1 can fail to
estimate survival, in particular because Equation 10 does not hold anymore. Alternatives include
plug-in G-formula estimators (Section 2.2.1) and unbiased transformations (Section 2.2.2).

9
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Figure 3: Causal graph in RCT survival data with dependent censoring.

2.2.1 The G-formula and the Cox Model

Because the censoring is now independent from the potential outcome conditionally to the covariates,
it would seem natural to model the response of the survival time conditionally to these covariates
too:

𝜇(𝑥, 𝑎) ∶= 𝔼[𝑇 ∧ 𝜏 |𝑋 = 𝑥, 𝐴 = 𝑎].

Building on Equation 7, one can express the RMST as a function of 𝜇:

𝜃RMST = 𝔼 [𝔼[𝑇 ∧ 𝜏 |𝑋 , 𝐴 = 1]] − 𝔼 [𝑇 ∧ 𝜏 |𝑋 , 𝐴 = 0]] = 𝔼[𝜇(𝑋 , 1) − 𝜇(𝑋 , 0)].

An estimator 𝜇 of 𝜇 would then straightforwardly yield an estimator of the difference in RMST
through the so-called G-formula plug-in estimator:

𝜃G−formula =
1
𝑛

𝑛
∑
𝑖=1

𝜇 (𝑋𝑖, 1) − 𝜇 (𝑋𝑖, 0) . (18)

We would like to stress that a G-formula approach works also in a observational context as the one
introduced in Section 3.2. However, because the estimation strategies presented in the next sections
relies on estimating nuisance parameters, and that this latter task is often done in the same way as
we estimate the conditional response 𝜇, we decided to not delay the introduction of the G-formula
any further, and we present below a few estimation methods for 𝜇. These methods are sub-divised in
two categories: 𝑇-learners, where 𝜇(⋅, 1) is estimated separately from 𝜇(⋅, 0), and _𝑆-learners, where 𝜇
is obtained by fitting a single model based on covariates (𝑋 , 𝐴).

Cox’s Model. There are many ways to model 𝜇 in a survival context, the most notorious of which
being the Cox proportional hazards model (Cox 1972). It relies on a semi-parametric modelling the
conditional hazard functions 𝜆(𝑎)(𝑡|𝑋 ) as

𝜆(𝑎)(𝑡|𝑋 ) = 𝜆(𝑎)0 (𝑡) exp(𝑋⊤𝛽(𝑎)),

where 𝜆(𝑎)0 is a baseline hazard function and 𝛽(𝑎) has the same dimension as the vector of covariate
𝑋. The conditional survival function then take the simple form (in the continuous case)

𝑆(𝑎)(𝑡|𝑋 ) = 𝑆(𝑎)0 (𝑡)exp(𝑋
⊤𝛽(𝑎)),

10



where 𝑆(𝑎)0 (𝑡) is the survival function associated with 𝜆(𝑎)0 . The vector 𝛽(𝑎) is classically estimated by
maximizing the so-called partial likelihood function as introduced in the original paper of Cox (1972):

ℒ(𝛽) ∶= ∏
Δ𝑖=1

exp(𝑋⊤
𝑖 𝛽)

∑
̃𝑇𝑗 ̃𝑇𝑖

exp(𝑋⊤
𝑗 𝛽)

,

while the cumulative baseline hazard function can be estimated through the Breslow’s estimator
(Breslow 1974):

Λ̂(𝑎)
0 (𝑡) = ∑

Δ𝑖=1, ̃𝑇𝑖𝑡

1
∑
̃𝑇𝑗 ̃𝑇𝑖

exp(𝑋⊤
𝑗 𝛽(𝑎))

where 𝛽(𝑎) is a partial likelihood maximizer. One can show that (𝛽(𝑎), Λ̂(𝑎)
0 ) is the MLE of the true

likelihood, when Λ̂(𝑎)
0 is optimized over all step fonctions of the form

Λ0(𝑡) ∶= ∑
Δ𝑖=1

ℎ𝑖, ℎ𝑖 ∈ ℝ+.

This fact was already hinted in the original paper by Cox and made rigorous in many subsequent
papers, see for instance Fan, Feng, and Wu (2010). Furthermore, if the true distribution follows a Cox
model, then both 𝛽(𝑎) and Λ̂(𝑎)

0 are strongly consistent and asymptotically normal estimator of the
true parameters 𝛽(𝑎) and Λ(𝑎), see Kalbfleisch and Prentice (2002), Sec 5.7. When using a 𝑇-learner
approach, one simply finds (𝛽(𝑎), Λ̂(𝑎)

0 ) for 𝑎 ∈ {0, 1} by considering the control group and the treated
group separately. When using a 𝑆-learner approach, the treatment status 𝐴 becomes a covariate a
the model becomes

𝜆(𝑡|𝑋 , 𝐴) = 𝜆0(𝑡) exp(𝑋⊤𝛽 + 𝛼𝐴). (19)

for some 𝛼 ∈ ℝ. One main advantage of Cox’s model is that it makes it very easy to interpret the
effect of a covariate on the survival time. If indeed 𝛼 > 0, then the treatment has a negative effect of
the survival times. Likewise, if 𝛽𝑖 > 0, then the 𝑖-th coordinate of 𝑋 has a negative effect as well. We
finally mention that the hazard ratio takes a particularly simple form under the later model since

𝜃HR = 𝑒𝛼.

In particular, it does not depends on the time horizon 𝜏, and is thus sometimes refered to as proportional
hazard. Figure 4 illustrates the estimation of the difference in Restricted Mean Survival Time using
G-formula with Cox models.

Weibull Model. A popular parametric model for survival is the Weibull Model, which amounts to
assume that

𝜆(𝑎)(𝑡|𝑋 ) = 𝜆(𝑎)0 (𝑡) exp(𝑋⊤𝛽)

where 𝜆(𝑎)0 (𝑡) is the instant hazard function of a Weibull distribution, that is to say a function
proportional to 𝑡𝛾 for some shape parameter 𝛾 > 0. We refer to Zhang (2016) for a study of this
model.

Survival Forests. On the non-parametric front, we mention the existence of survival forests
(Ishwaran et al. 2008).
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Figure 4: Illustration of the G-formula for estimating 𝜃RMST in an RCT when only one covariate 𝑋1
influences the outcome.

2.2.2 Censoring unbiased transformations

Censoring unbiased transformations involve applying a transformation to 𝑇. Specifically, we compute
a new time 𝑇 ∗ of the form

𝑇 ∗ ∶= 𝑇 ∗( ̃𝑇 , 𝑋 , 𝐴, Δ) =
{
𝜙0( ̃𝑇 ∧ 𝜏 , 𝑋 , 𝐴) if Δ𝜏 = 0,
𝜙1( ̃𝑇 ∧ 𝜏 , 𝑋 , 𝐴) if Δ𝜏 = 1.

(20)

for two wisely chosen transformations 𝜙0 and 𝜙1, and where

Δ𝜏 ∶= 𝕀{𝑇 ∧ 𝜏 𝐶} = Δ + (1 − Δ)𝕀( ̃𝑇 𝜏 ) (21)

is the indicator of the event where the individual is either uncensored or censored after time 𝜏. The
idea behind the introduction of Δ𝜏 is that because we are only interested in computed the expectation
of the survival time thresholded by 𝜏, any censored observation coming after time 𝜏 can in fact be
considered as uncensored (Δ𝜏 = 1).

A censoring unbiased transformation 𝑇 ∗ shall satisfy: for 𝑎 ∈ {0, 1}, it holds

𝔼[𝑇 ∗|𝐴 = 𝑎, 𝑋] = 𝔼[𝑇 (𝑎) ∧ 𝜏 |𝑋 ] almost surely. (22)

A notable advantage of this approach is that it enables the use of the full transformed dataset
(𝑋𝑖, 𝐴𝑖, 𝑇 ∗

𝑖 ) as if no censoring occured. Because it holds

𝔼[𝔼[𝑇 ∗|𝐴 = 𝑎, 𝑋]] = 𝔼 [
𝕀{𝐴 = 𝑎}
ℙ(𝐴 = 𝑎)

𝑇 ∗
] , (23)

there is a very natural way to derive an estimator of the difference in RMST from any censoring
unbiased transformation 𝑇 ∗ as:

𝜃 =
1
𝑛

𝑛
∑
𝑖=1(

𝐴𝑖
𝜋

−
1 − 𝐴𝑖
1 − 𝜋 )𝑇 ∗

𝑖 (24)
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where 𝜋 = ℙ(𝐴 = 1) ∈ (0, 1) by Assumption 6 and where 𝑇 ∗
𝑖 = 𝑇 ∗( ̃𝑇𝑖, 𝑋𝑖, 𝐴𝑖, Δ𝑖). We easily get the

following result.

Proposition 2.3. Under Assumptions 5 and 6, the estimator 𝜃 derived as in Equation 24 from a square
integrable censoring unbiased transformations satisfying Equation 22 is an unbiased, strongly consistent,
and asymptotically normal estimator of the difference in RMST.

Square integrability will be ensured any time the transformnation is bounded, which will always be
the case of the ones considered in this work. It is natural in a RCT setting to assume that probability
of being treated 𝜋 is known. If not, it is usual to replace 𝜋 by its empirical counterpart 𝜋 = 𝑛1/𝑛
where 𝑛𝑎 = ∑𝑖 1{𝐴 = 𝑎}. The resulting estimator takes the form

𝜃 =
1
𝑛1

∑
𝐴𝑖=1

𝑇 ∗
𝑖 −

1
𝑛0

∑
𝐴𝑖=0

𝑇 ∗
𝑖 . (25)

Note however that this estimator is slighlty biased due to the estimation of 𝜋 (see for instance Colnet
et al. (2022), Lemma 2), but it is still strongly consistent and asymptotically normal, and its biased is
exponentially small in 𝑛.

Proposition 2.4. Under Assumptions 5 and 6, the estimator 𝜃 derived as in Equation 25 from a square
integrable censoring unbiased transformations satisfying Equation 22 is a strongly consistent, and
asymptotically normal estimator of the difference in RMST.

The twomost popular transformations are Inverse-Probability-of-CensoringWeighting (Koul, Susarla,
and Ryzin (1981)) and Buckley-James (Buckley and James (1979)), both illustrated in Figure 5 and
detailed below. In the former, only non-censored observations are considered and they are weighted
while in the latter, censored observations are imputed with an estimated survival time.

෨𝑇 ∧ 𝜏

X
Age < 50 ans Age ≥ 50 ans

Censored observation

Data with censored observations

Data after Buckley-James (BJ) transformation

Data after Inverse Probability of Censoring (IPC) transformation

For uncensored observation: 

𝑇∗ =
෨𝑇∧ 𝜏.Δ𝜏

𝐺(𝑡|𝐴𝑔𝑒)

For censored observation: 

T*=0

T*

X
Age < 50 ans Age ≥ 50 ans

𝐺 𝑡 𝐴𝑔𝑒 < 50 = 0,6 𝐺 𝑡 𝐴𝑔𝑒 > 50 = 0,3

T*

X
Age < 50 ans Age ≥ 50 ans

For censored observation: 

𝑇∗ = 1 − Δ𝜏 . 𝐸[ ෨𝑇 ∧ 𝜏|𝐴𝑔𝑒, ෨𝑇 ∧ 𝜏 > 𝑡]

For uncensored observation 
(no modification):

𝑇∗ = ෨𝑇 ∧ 𝜏. Δ𝜏

Figure 5: Illustration of Inverse-Probability-of-Censoring and Buckley-James transformations.

The Inverse-Probability-of-Censoring Weighted transformation

The Inverse-Probability-of-Censoring Weighted (IPCW) transformation, introduced by (Koul, Susarla,
and Ryzin (1981)) in the context of censored linear regression, involves discarding censored observa-
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tions and applying weights to uncensored data. More precisely, we let

𝑇 ∗
IPCW =

Δ𝜏

𝐺( ̃𝑇 ∧ 𝜏 |𝑋 , 𝐴)
̃𝑇 ∧ 𝜏 , (26)

where we recall that 𝐺(𝑡|𝑋 , 𝐴) ∶= ℙ(𝐶 𝑡|𝑋 , 𝐴) is the left limit of the conditional survival function
of the censoring. This estimator assigns higher weights to uncensored subjects within a covariate
group that is highly prone to censoring, thereby correcting for conditionally independent censoring
and reducing selection bias (Howe et al. 2016).

Proposition 2.5. Under Assumptions 1, 5, 6, 16 and 17, the IPCW transform 26 is a censoring unbiased
transformation in the sense of Equation 22.

The proof of Proposition 2.5 is in Section 8.2. The IPCW depends on the unknown conditional
survival function of the censoring 𝐺(⋅|𝑋 , 𝐴), which thus needs to be estimated. Estimating conditional
censoring or the conditional survival function can be approached similarly, as both involve estimating
a time—whether for survival or censoring. Consequently, we can use semi-parametric methods, such
as the Cox model, or non-parametric approaches like survival forests, and we refer to Section 2.2.1
for a development on these approaches. Once an estimator 𝐺(⋅|𝐴, 𝑋 ) of the later is provided, one can
construct an estimator of the difference in RMST based on Equation 24 or Equation 25

𝜃IPCW =
1
𝑛

𝑛
∑
𝑖=1(

𝐴𝑖
𝜋

−
1 − 𝐴𝑖
1 − 𝜋 )𝑇 ∗

IPCW,𝑖, (27)

or
𝜃IPCW =

1
𝑛1

∑
𝐴𝑖=1

𝑇 ∗
IPCW,𝑖 −

1
𝑛0

∑
𝐴𝑖=0

𝑇 ∗
IPCW,𝑖. (28)

where we recall that 𝑛𝑎 ∶= #{𝑖 ∈ [𝑛] | 𝐴𝑖 = 𝑎}. By Proposition 2.3, Proposition 2.4 and Proposition 2.5,
we easily deduce that 𝜃IPCW is asymptotically consistent as soon as 𝐺 is.

Corollary 2.1. Under Assumptions1, 5, 6, 16 and 17, if 𝐺 is uniformly weakly (resp. strongly) consistent
then so is 𝜃IPCW, either as in defined in Equation 27 or in Equation 28.

This result simply comes from the fact that 𝜃IPCW depends continuously on 𝐺 and that 𝐺 is lower-
bounded (Assumption 17). Surprisingly, we found limited use of this estimator in the literature,
beside its first introduction in Koul, Susarla, and Ryzin (1981). This could potentially be explained by
the fact that, empirically, we observed that this estimator is highly variable. Consequently, we do
not explore its properties further and will not include it in the numerical experiments. A related and
more popular estimator is the IPCW-Kaplan-Meier, defined as follows.

Definition 2.2. (IPCW-Kaplan-Meier) We let again 𝐺(⋅|𝑋 , 𝐴) be an estimator of the (left limit of) the
conditional censoring survival function and we introduce

𝐷IPCW
𝑘 (𝑎) ∶=

𝑛
∑
𝑖=1

Δ𝜏
𝑖

𝐺( ̃𝑇𝑖 ∧ 𝜏 |𝑋𝑖, 𝐴 = 𝑎)
𝕀( ̃𝑇𝑖 = 𝑡𝑘, 𝐴𝑖 = 𝑎)

and 𝑁 IPCW
𝑘 (𝑎) ∶=

𝑛
∑
𝑖=1

Δ𝜏
𝑖

𝐺( ̃𝑇𝑖 ∧ 𝜏 |𝑋𝑖, 𝐴 = 𝑎)
𝕀( ̃𝑇𝑖 𝑡𝑘, 𝐴𝑖 = 𝑎),

be the weight-corrected numbers of deaths and of individual at risk at time 𝑡𝑘. The IPCW version of
the KM estimator is then defined as:

𝑆IPCW(𝑡|𝐴 = 𝑎) = ∏
𝑡𝑘𝑡 (

1 −
𝐷IPCW
𝑘 (𝑎)

𝑁 IPCW
𝑘 (𝑎))

.
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Note that the quantity 𝜋 is not present in the definition of 𝐷IPCW
𝑘 (𝑎) and 𝑁 IPCW

𝑘 (𝑎) because it would
simply disappear in the ratio 𝐷IPCW

𝑘 (𝑎)/𝑁 IPCW
𝑘 (𝑎). The subsequent RMST estimator then take the

form
𝜃IPCW−KM = ∫

𝜏

0
𝑆IPCW(𝑡|𝐴 = 1) − 𝑆IPCW(𝑡|𝐴 = 0)𝑑𝑡. (29)

Like before for the classical KM estimator, this new reweighted KM estimator enjoys good statistical
properties.

Proposition 2.6. Under Assumptions 1, 5, 6, 16 and 17, and for all 𝑡 ∈ [0, 𝜏], the oracle estimator
𝑆∗IPCW(𝑡|𝐴 = 𝑎) defined as in Definition 2.2 with 𝐺 = 𝐺 is a stronlgy consistent and asymptotically
normal estimator of 𝑆(𝑎)(𝑡) .

The proof of Proposition 2.6 can be found in Section 8.2. Because the evaluation of 𝑁 IPCW
𝑘 (𝑎) now

depends on information gathered after time 𝑡𝑘 (through the computation of the weights), the previous
proofs on the absence of bias and on the derivation of the asymptotic variance unfortunately do not
carry over in this case. Whether its bias is exponentially small and whether the asymptotic variance
can be derived in a closed form are questions left open. We are also not aware of any estimation
schemes for the asymptotic variance in this context. In the case where we do not have access to the
oracle survival function 𝐺, we can again still achieve consistency if the estimator 𝐺(⋅|𝐴, 𝑋 ) that we
provide is consistent.

Corollary 2.2. Under Assumptions 1, 5, 16 and 17, if 𝐺 is uniformly weakly (resp. strongly) consistent
then so is 𝑆IPCW(𝑡|𝐴 = 𝑎).

This corollary ensures that the corresponding RMST estimator defined in Equation 29 will be consis-
tent as well.

The Buckley-James transformation

One weakness of the IPCW transformation is that it discards all censored data. The Buckley-James
(BJ) transformation, introduced by (Buckley and James (1979)), takes a different path by leaving all
uncensored values untouched, while replacing the censored ones by an extrapolated value. Formally,
it is defined as follows:

𝑇 ∗
BJ = Δ𝜏( ̃𝑇 ∧ 𝜏 ) + (1 − Δ𝜏)𝑄𝑆( ̃𝑇 ∧ 𝜏 |𝑋 , 𝐴), (30)

where, for 𝑡 𝜏,

𝑄𝑆(𝑡|𝑋 , 𝐴) ∶= 𝔼[𝑇 ∧ 𝜏 |𝑋 , 𝐴, 𝑇 ∧ 𝜏 > 𝑡] =
1

𝑆(𝑡|𝑋 , 𝐴) ∫
𝜏

𝑡
𝑆(𝑢|𝑋 , 𝐴) d𝑢

where 𝑆(𝑡|𝑋 , 𝐴 = 𝑎) ∶= ℙ(𝑇 (𝑎) > 𝑡|𝑋 ) is the conditional survival function. We refer again to Figure 5
for a diagram of this transformation.

Proposition 2.7. Under Assumptions 1, 5, 16 and 17, the BJ transform 30 is a censoring unbiased
transformation in the sense of Equation 22.

The proof of Proposition 2.7 can be found in Section 8.2. Again, the BJ transformation depends on a
nuisance parameter (here 𝑄𝑆(⋅|𝑋 , 𝐴)) that needs to be estimated. We again refer to Section 2.2.1 for a
brief overview of possible estimation strategies for 𝑄𝑆. Once provided with an estimator 𝑄𝑆(⋅|𝐴, 𝑋 ), a
very natural estimator of the RMST based on the BJ transformation and on Equation 24 or Equation 25
would be

𝜃BJ =
1
𝑛

𝑛
∑
𝑖=1(

𝐴𝑖
𝜋

−
1 − 𝐴𝑖
1 − 𝜋 )𝑇 ∗

BJ,𝑖, (31)
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or
𝜃BJ =

1
𝑛1

∑
𝐴𝑖=1

𝑇 ∗
BJ,𝑖 −

1
𝑛0

∑
𝐴0=1

𝑇 ∗
BJ,𝑖. (32)

Like for the IPCW transformation, the BJ transformation yields a consistent estimate of the RMST as
soon as the model is well-specified.

Corollary 2.3. Under Assumptions 1, 5, 16 and 17, if 𝑄𝑆 is uniformly weakly (resp. strongly) consistent
then so is 𝜃BJ defined as in Equation 31 or Equation 32.

The proof is again a mere application of Propositions 2.3, 2.4 and 2.7, and relies on the continuity of
𝑆 ↦ 𝑄𝑆. The BJ transformation is considered as the best censoring transformation of the original
response in the following sense.

Theorem 2.1. For any transformation 𝑇 ∗ of the form 20, it holds

𝔼[(𝑇 ∗
BJ − 𝑇 ∧ 𝜏)2] 𝔼[(𝑇 ∗ − 𝑇 ∧ 𝜏)2].

This result is stated in Fan and Gijbels (1994) but without a proof. We detail it in Section 8.2 for
completeness.

2.2.3 Augmented corrections

The main disadvantage of the two previous transformations is that they heavily rely on the
specification of good estimator 𝐺 (for IPCW) or 𝑆 (for BJ). In order to circumvent this limitation, D.
Rubin and Laan (2007) proposed the following transformations, whose expression is based on theory
of semi-parametric estimation developed in Laan and Robins (2003),

𝑇 ∗
DR =

Δ𝜏 ̃𝑇 ∧ 𝜏
𝐺( ̃𝑇 ∧ 𝜏 |𝑋 , 𝐴)

+
(1 − Δ𝜏)𝑄𝑆( ̃𝑇 ∧ 𝜏 |𝑋 , 𝐴)

𝐺( ̃𝑇 ∧ 𝜏 |𝑋 , 𝐴)
− ∫

̃𝑇 ∧𝜏

0

𝑄𝑆(𝑡|𝑋 , 𝐴)
𝐺(𝑡|𝑋 , 𝐴)2

dℙ𝐶(𝑡|𝑋 , 𝐴), (33)

where dℙ𝐶(𝑡|𝑋 , 𝐴) is the distribution of 𝐶 conditional on the covariates 𝑋 and 𝐴. We stress that this
distribution is entirely determined by the 𝐺(⋅|𝑋 , 𝐴), so that this transformation only depends on the
knowledge of both conditional survival functions 𝐺 and 𝑆, will be thus sometimes denoted 𝑇 ∗

DR(𝐺, 𝑆)
to underline this dependency. This transformation is not only a censoring unbiased transform in the
sense of Equation 22, but is also doubly robust in the following sense.

Proposition 2.8. We let 𝐹 , 𝑅 be two conditional survival functions. Under Assumptions 1, 5, 6, 16 and
17, if 𝐹 also satisfies Assumption 17, and if 𝐹 (⋅|𝑋 , 𝐴) is absolutely continuous wrt 𝐺(⋅|𝑋 , 𝐴), then the
transformation 𝑇 ∗

DR = 𝑇 ∗
DR(𝐹 , 𝑅) is a censoring unbiased transformation in the sense of Equation 22

whenever 𝐹 = 𝐺 or 𝑅 = 𝑆.

The statement and proof of this results is found in D. Rubin and Laan (2007) in the case where 𝐶 and
𝑇 are continuous. A careful examination of the proofs show that the proof translates straight away
to our discrete setting.

3 Causal survival analysis in observational studies

Unlike RCT, observational data — such as from registries, electronic health records, or national
healthcare systems — are collected without controlled randomized treatment allocation. In such
cases, treated and control groups are likely unbalanced due to the non-randomized design, which
results in the treatment effect being confounded by variables influencing both the survival outcome
𝑇 and the treatment allocation 𝐴. To enable identifiability of the causal effect, additional standard
assumptions are needed.
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Assumption. (Conditional exchangeability / Unconfoundedness) It holds

𝐴 ⟂⟂ 𝑇(0), 𝑇 (1)|𝑋 (34)

Under Equation 34, the treatment assignment is randomly assigned conditionally on the covariates
𝑋. This assumption ensures that there are no unmeasured confounder as the latter would make it
impossible to distinguish correlation from causality.

Assumption. (Positivity / Overlap for treatment) Letting 𝑒(𝑋 ) ∶= ℙ(𝐴 = 1|𝑋 ) be the propensity score,
there holds

0 < 𝑒(𝑋 ) < 1 almost surely. (35)

The Equation 35 assumption requires adequate overlap in covariate distributions between treatment
groups, meaning every observation must have a non-zero probability of being treated. Because
Assumption 5 does not hold anymore, neither does the previous idenfiability Equation 7. In this new
context, we can write

𝜃RMST = 𝔼[𝑇 (1) ∧ 𝜏 − 𝑇 (0) ∧ 𝜏]

= 𝔼 [𝔼[𝑇 (1) ∧ 𝜏 |𝑋 ] − 𝔼[𝑇 (0) ∧ 𝜏 |𝑋 ]]
= 𝔼 [𝔼[𝑇 (1) ∧ 𝜏 |𝑋 , 𝐴 = 1] − 𝔼[𝑇 (0) ∧ 𝜏 |𝑋 , 𝐴 = 0]] (unconfoundness)

= 𝔼 [𝔼[𝑇 ∧ 𝜏 |𝑋 , 𝐴 = 1] − 𝔼[𝑇 ∧ 𝜏 |𝑋 , 𝐴 = 0]] . (SUTVA)

(36)

In another direction, one could wish to identify the treatment effect through the survival curve as in
Equation 2:

𝑆(𝑎)(𝑡) = ℙ(𝑇 (𝑎) > 𝑡) = 𝔼 [ℙ(𝑇 > 𝑡|𝑋 , 𝐴 = 𝑎)] . (37)

Again, both identities still depend on the unknown quantity 𝑇 and suggest two different estimation
strategies. These strategies differ according to the censoring assumptions and are detailed below.

3.1 Independent censoring

Figure 6 illustrates a causal graph in observational survival data with independent censoring (As-
sumption 8).

C
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Causal Survival

Figure 6: Causal graph in observational survival data with independent censoring.
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Under Assumption 8, we saw in Section 2.1 that the Kaplan-Meier estimator could conveniently
handle censoring. Building on Equation 37, we can write

𝑆(1)(𝑡) = 𝔼 [
𝔼[𝕀{𝐴 = 1, 𝑇 > 𝑡}|𝑋 ]

𝔼[𝕀{𝐴 = 1}|𝑋 ] ] = 𝔼 [
𝐴𝕀{𝑇 > 𝑡}
𝑒(𝑋 ) ] ,

which suggests to adapt the classical KM estimator by reweighting it by the propensity score. The use
of propensity score in causal inference has been initially introduced by Rosenbaum and Rubin (1983)
and further developed in Hirano, Imbens, and Ridder (2003). It was extended to survival analysis by
Xie and Liu (2005) through the adjusted Kaplan-Meier estimator as defined below.

Definition 3.1. (IPTW Kaplan-Meier estimator) We let 𝑒(⋅) be an estimator of the propensity score
𝑒(⋅). We introduce

𝐷IPTW
𝑘 (𝑎) ∶=

𝑛
∑
𝑖=1(

𝑎
𝑒(𝑋𝑖)

+
1 − 𝑎

1 − 𝑒(𝑋𝑖))
𝕀( ̃𝑇𝑖 = 𝑡𝑘, Δ𝑖 = 1, 𝐴𝑖 = 𝑎)

and 𝑁 IPTW
𝑘 (𝑎) ∶=

𝑛
∑
𝑖=1(

𝑎
𝑒(𝑋𝑖)

+
1 − 𝑎

1 − 𝑒(𝑋𝑖))
𝕀( ̃𝑇𝑖 𝑡𝑘, 𝐴𝑖 = 𝑎),

be the numbers of deaths and of individual at risk at time 𝑡𝑘, reweighted by the propensity score. The
Inverse-Probability-of-Treatment Weighting (IPTW) version of the KM estimator is then defined as:

𝑆IPTW(𝑡|𝐴 = 𝑎) = ∏
𝑡𝑘𝑡 (

1 −
𝐷IPTW
𝑘 (𝑎)

𝑁 IPTW
𝑘 (𝑎))

. (38)

We let 𝑆∗IPTW(𝑡|𝐴 = 𝑎) be the oracle KM-estimator defined as above with 𝑒(⋅) = 𝑒(⋅). Although the
reweighting slightly changes the analysis, the good properties of the classical KM carry on to this
setting.

Proposition 3.1. Under Assumptions 1, 34, 35, 8 and 9 The oracle IPTW Kaplan-Meier estimator
𝑆∗IPTW(𝑡|𝐴 = 𝑎) is a strongly consistent and asymptotically normal estimator of 𝑆(𝑎)(𝑡).

The proof of this result simply relies again on the law of large number and the 𝛿-method and can be
found in Section 8.3. Because now 𝑆∗IPTW is a continuous function of 𝑒(⋅), and because 𝑒 and 1 − 𝑒 are
lower-bounded as per Assumptions 35, we easily derive the following corollary.

Corollary 3.1. Under the same assumptions as Proposition 3.1, if 𝑒(⋅) satisfies ‖𝑒 − 𝑒‖∞ → 0 almost
surely (resp. in probability), then the IPTW Kaplan-Meier estimator ̂𝑆IPTW(𝑡|𝐴 = 𝑎) is a strongly (resp.
weakly) consistent estimator of 𝑆(𝑎)(𝑡).

The resulting RMST estimator simply takes the form:

𝜃IPTW−KM = ∫
𝜏

0
𝑆IPTW(𝑡|𝐴 = 1) − 𝑆IPTW(𝑡|𝐴 = 0)𝑑𝑡. (39)

which will be consistent under the same Assumptions as the previous Corollary. Note that, we are not
aware of any formal results concerning the bias and the asymptotic variance of the oracle estimator
𝑆∗IPTW(𝑡|𝐴 = 𝑎), and we refer to Xie and Liu (2005) for heuristics concerning these questions.
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3.2 Conditional independent censoring

Under Assumptions 34 (uncounfoundedness) and 16 (conditional independent censoring), the causal
effect is affected both by confounding variables and by conditional censoring. The associated causal
graph is depicted in Figure 7. In this setting, one can still use the 𝐺-formula exactly as in Section 2.2.1.

A natural alternative approach is to weight the IPCW and BJ transformations from Section 2.2.2 by
the propensity score to disentangle both confounding effects and censoring at the same time.
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Figure 7: Causal graph in observational survival data with dependent censoring.

We mention that the G-formula approach developed in Section 2.2.1 does work in that context.
In particular, Chen and Tsiatis (2001) prove consistency and asymptotic normality results for Cox
estimators in a observational study, and they give an explicit formulation of the asymptotic variance
as a function of the parameters of the Cox model. In the non-parametric world, Foster, Taylor, and
Ruberg (2011) and Künzel et al. (2019) empirically study this estimator using survival forests, with
the former employing it as a T-learner (referred to as Virtual Twins) and the latter as an S-learner.

3.2.1 IPTW-IPCW transformations

One can check that the IPCW transformation as introduced in Equation 26 is also a censoring
unbiased transformation in that context.

Proposition 3.2. Under Assumptions 1, 34, 35, 16 and 17, the IPTW-IPCW transform 26 is a censoring
unbiased transformation in the sense of Equation 22.

The proof of Proposition 3.2 can be found in Section 8.4. Deriving an estimator of the difference in
RMST is however slightly different in that context. In particular, Equation 23 rewrites

𝔼[𝔼[𝑇 ∗|𝑋 , 𝐴 = 1]] = 𝔼 [
𝐴

𝑒(𝑋 )
𝑇 ∗
] ,

Which in turn suggests to define

𝜃IPTW−IPCW =
1
𝑛

𝑛
∑
𝑖=1(

𝐴
𝑒(𝑋 )

−
1 − 𝐴

1 − 𝑒(𝑋 ))
𝑇 ∗
IPCW,𝑖. (40)

This transformation now depends on two nuisance parameters, namely the conditional survival
function of the censoring (through 𝑇 ∗

IPCW) and the propensity score. Once estimators of these
quantities are provided, one could look at the corresponding quantity computed with these estimators.
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Proposition 3.3. Under Assumptions 1, 34, 35, 16 and 17, and if 𝐺(⋅|𝑋 , 𝐴) and 𝑒(⋅) are uniformly weakly
(resp. strongly) consistent estimators, then estimator 40 defined with 𝑒 and 𝐺 is a weakly (resp. strongly)
consistent estimator of the difference in RMST.

The proof of Proposition 3.3 can be found in Section 8.4. We can also use the same strategy as for the
IPCW transformation and incorporate the new weights into a Kaplan-Meier estimator.

Definition 3.2. (IPTW-IPCW-Kaplan-Meier) We let again 𝐺(⋅|𝑋 , 𝐴) and 𝑒(⋅) be estimators of the
conditional censoring survival function and of the propensity score. We introduce

𝐷IPTW−IPCW
𝑘 (𝑎) ∶=

𝑛
∑
𝑖=1(

𝐴𝑖
𝑒(𝑋𝑖)

+
1 − 𝐴𝑖

1 − 𝑒(𝑋𝑖))
Δ𝜏
𝑖

𝐺( ̃𝑇𝑖 ∧ 𝜏 |𝑋𝑖, 𝐴 = 𝑎)
𝕀( ̃𝑇𝑖 = 𝑡𝑘, 𝐴𝑖 = 𝑎)

and 𝑁 IPTW−IPCW
𝑘 (𝑎) ∶=

𝑛
∑
𝑖=1(

𝐴𝑖
𝑒(𝑋𝑖)

+
1 − 𝐴𝑖

1 − 𝑒(𝑋𝑖))
Δ𝜏
𝑖

𝐺( ̃𝑇𝑖 ∧ 𝜏 |𝑋𝑖, 𝐴 = 𝑎)
𝕀( ̃𝑇𝑖 𝑡𝑘, 𝐴𝑖 = 𝑎),

be the weight-corrected numbers of deaths and of individual at risk at time 𝑡𝑘. The IPTW-IPCW
version of the KM estimator is then defined as:

𝑆IPTW−IPCW(𝑡|𝐴 = 𝑎) = ∏
𝑡𝑘𝑡 (

1 −
𝐷IPTW−IPCW
𝑘 (𝑎)

𝑁 IPTW−IPCW
𝑘 (𝑎))

.

The difference in RMST estimated with IPTW-IPCW-Kaplan-Meier survival curves is then simply as

𝜃IPTW−IPCW−KM = ∫
𝜏

0
𝑆IPTW−IPCW(𝑡|𝐴 = 1) − 𝑆IPTW−IPCW(𝑡|𝐴 = 0)𝑑𝑡. (41)

Proposition 3.4. Under Assumptions 1, 34, 35, 16 and 17, and for all 𝑡 ∈ [0, 𝜏], if the oracle estimator
𝑆∗IPTW−IPCW(𝑡|𝐴 = 𝑎) defined as in Definition 3.2 with 𝐺(⋅|𝐴, 𝑋 ) = 𝐺(⋅|𝐴, 𝑋 ) and 𝑒 = 𝑒 is a strongly
consistent and asymptotically normal estimator of 𝑆(𝑎)(𝑡) .

The proof of Proposition 3.4 can be found in Section 8.4. Under consistency of the estimators of
the nuisance parameters, the previous proposition implies that this reweighted Kaplan-Meier is a
consistent estimator of the survival curve, which in turn implies consistency of 𝜃IPTW−IPCW−KM.

Corollary 3.2. Under Assumptions 1, 34, 35, 16 and 17, and for all 𝑡 ∈ [0, 𝜏], if the nuisance estimators
𝐺(⋅|𝐴, 𝑋 ) and 𝑒 are weakly (resp. strongly) uniformly consistent, then 𝑆IPTW−IPCW(𝑡|𝐴 = 𝑎) is a weakly
(resp. strongly) consistent estimator of 𝑆(𝑎)(𝑡).

We are not aware of general formula for the asymptotic variances in this context. We mention
nonetheless that Schaubel and Wei (2011) have been able to derive asymptotic laws in this framework
in the particular case of Cox-models.

3.2.2 IPTW-BJ transformations

Like IPCW tranformation, BJ transformation is again a censoring unbiased transformation in an
observational context.

Proposition 3.5. Under Assumptions 1, 34, 35, 16 and 17, the IPTW-BJ transform 30 is a censoring
unbiased transformation in the sense of Equation 22.
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The proof of Proposition 3.5 can be found in Section 8.4. The corresponding estimator of the difference
in RMST is

̂𝜃IPTW−BJ =
1
𝑛

𝑛
∑
𝑖=1(

𝐴
𝑒(𝑋 )

−
1 − 𝐴

1 − 𝑒(𝑋 ))
𝑇 ∗
BJ,𝑖. (42)

This transformation depends on the conditional survival function 𝑆 (through 𝑇 ∗
BJ) and the propensity

score. Consistency of the nuisance parameter estimators implies again consistency of the RMST
estimator.

Proposition 3.6. Under Assumptions 1, 34, 35, 16 and 17, and if 𝑆(⋅|𝑋 , 𝐴) and 𝑒(⋅) are uniformly weakly
(resp. strongly) consistent estimators, then 𝜃IPTW−BJ defined with 𝑆 and 𝑒 is a weakly (resp. strongly)
consistent estimator of the RMST.

The proof of Proposition 3.6 can be found in Section 8.4.

3.2.3 Double augmented corrections

Building on the classical doubly-robust AIPTW estimator from causal inference (Robins, Rotnitzky,
and Zhao 1994), we could incorporate the doubly-robust transformations of Section 2.2.3 to obtain a
quadruply robust tranformation

Δ∗
QR = Δ∗

QR(𝐺, 𝑆, 𝜇, 𝑒) ∶= (
𝐴

𝑒(𝑋 )
−

1 − 𝐴
1 − 𝑒(𝑋 ))

(𝑇 ∗
DR(𝐺, 𝑆) − 𝜇(𝑋 , 𝐴)) + 𝜇(𝑋 , 1) − 𝜇(𝑋 , 0),

where we recall that 𝑇 ∗
DR is defined in Section 2.2.3. This transformations depends on four nuisance

parameters: 𝐺 and 𝑆 through 𝑇 ∗
DR, and now the propensity score 𝑒 and the conditional response 𝜇.

This transformation doesn’t really fall into the scope of censoring unbiased transform, but it is easy
to show that Δ∗

QR is quadruply robust in the following sense.

Proposition 3.7. Let 𝐹 , 𝑅 be two conditional survival function, 𝑝 be a propensity score, and 𝜈 be
a conditional response. Then, under the same assumption on 𝐹 , 𝑅 as in Proposition 2.8, and under
Assumptions 1, 34, 35, 16 and 17, the transformations Δ∗

QR = Δ∗
QR(𝐹 , 𝑅, 𝑝, 𝜈) satisfies, fo 𝑎 ∈ 0, 1,

𝔼[Δ∗
QR|𝑋 ] = 𝔼[𝑇 (1) ∧ 𝜏 − 𝑇 (0) ∧ 𝜏 |𝑋 ] if

{
𝐹 = 𝐺 or 𝑅 = 𝑆 and
𝑝 = 𝑒 or 𝜈 = 𝜇.

This result is similar to Ozenne et al. (2020), Thm 1, and its proof can be found in Section 8.4. Based
on estimators (𝐺, 𝑆, 𝜇, 𝑒) of (𝐺, 𝑆, 𝜇, 𝑒), one can then propose the following estimator of the RMST,
coined the AIPTW-AIPCW estimator in Ozenne et al. (2020):

𝜃AIPTW−AIPCW ∶=
1
𝑛

𝑛
∑
𝑖=1

Δ∗
QR,𝑖(𝐺, 𝑆, 𝜇, 𝑒)

=
1
𝑛

𝑛
∑
𝑖=1(

𝐴𝑖
𝑒(𝑋𝑖)

−
1 − 𝐴𝑖

1 − 𝑒(𝑋𝑖))
(𝑇 ∗

DR(𝐺, 𝑆)𝑖 − 𝜇(𝑋𝑖, 𝐴𝑖)) + 𝜇(𝑋𝑖, 1) − 𝜇(𝑋𝑖, 0).
(43)

This estimator enjoys good asymptotic properties under parametric models, as detailed in Ozenne et
al. (2020).

4 Implementation

In this section, we first summarize the various estimators and their properties. We then provide
custom implementations for all estimators, even those already available in existing packages. These

21



manual implementations serve two purposes: first, to make the methods accessible to the community
when no existing implementation is available; and second, to facilitate a deeper understanding of
the methods by detailing each step, even when a package solution exists. Finally, we present the
packages available for directly computing 𝜃RMST.

4.1 Summary of the estimators

Table 3 provides an overview of the estimators introduced in this paper, along with the corresponding
nuisance parameters needed for their estimation and an overview of their statistical properties in
particular regarding their sensitivity to misspecification of the nuisance parameters.

Table 3: Estimators of the difference in RMST and nuisance parameters needed to compute each
estimator. Empty boxes indicate that the nuisance parameter is not needed in the estimator thus
misspecification has no impact. Estimators in italic are those that are already implemented in available
packages.

Estimator RCT Obs
Ind
Cens

Dep
Cens

Outcome
model

Censor-
ing
model

Treat-
ment
model

Robust-
ness

Unadjusted KM 𝑋 𝑋
IPCW-KM 𝑋 𝑋 𝑋 𝐺
BJ 𝑋 𝑋 𝑋 𝑆
IPTW-KM 𝑋 𝑋 𝑋 𝑒
IPCW-IPTW-KM 𝑋 𝑋 𝑋 𝑋 𝐺 𝑒
IPTW-BJ 𝑋 𝑋 𝑋 𝑋 𝑆 𝑒
G-formula 𝑋 𝑋 𝑋 𝑋 𝜇
AIPTW-AIPCW 𝑋 𝑋 𝑋 𝑋 𝑆, 𝜇 𝐺 𝑒 𝑋 (Prp

3.7)

4.2 Implementation of the estimators

Across different implementations, we use the following shared functions provided in the utilitary.R
file.

• estimate_propensity_score: function to estimate propensity scores 𝑒(𝑋 ) using either para-
metric (i.e. logistic regression with the argument type_of_model = "glm") or non-parametric
methods (i.e. probability forest with the argument type_of_model ="probability forest"
based on the probability_forest function from the grf (Tibshirani et al. 2017) package). This
latter can include cross-fitting (n.folds 1).

• estimate_survival_function: function to estimate the conditional survival model, which
supports either Cox models (argument type_of_model = "cox") or survival forests (argument
type_of_model = "survival forest") which uses the function survival_forest from the
grf (Tibshirani et al. 2017) package. This latter can include cross-fitting (n.folds 1). The
estimation can be done with a single learner (argument learner = "S-learner") or two
learners (argument learner = "T-learner").

• estimate_hazard_function: function to estimate the instantaneous hazard function by de-
riving the cumulative hazard function at each time point. This cumulative hazard function is
estimated from the negative logarithm of the survival function.
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• Q_t_hat: function to estimate the remaining survival function at all time points and for all
individuals which uses the former estimate_survival_function.

• Q_Y: function to select the value of the remaining survival function from Q_t_hat at the specific
time-to-event.

• integral_rectangles: function to estimate the integral of a decreasing step function using
the rectangle method.

• expected_survival: function to estimate the integral with 𝑥, 𝑦 coordinate (estimated survival
function) using the trapezoidal method.

• integrate: function to estimate the integral at specific time points Y.grid of a given integrand
function which takes initially its values on times using the trapezoidal method.

Unadjusted Kaplan-Meier

Although Kaplan-Meier is implemented in the survival package (Therneau 2001), we provide a
custom implementation, Kaplan_meier_handmade, for completeness. The difference in Restricted
Mean Survival Time, estimated using Kaplan-Meier as in Equation 14 can then be calculated with the
RMST_1 function.

As an alternative, one can also use the survfit function in the survival package (Therneau 2001) for
Kaplan-Meier and specify the rmean argument equal to 𝜏 in the corresponding summary function:

IPCW Kaplan-Meier

We first provide an adjusted.KM function which is then used in the IPCW_Kaplan_meier function to
estimate the difference in RMST ̂𝜃IPCW as in Equation 29. The survival censoring function 𝐺(𝑡|𝑋 ) is
computed with the estimate_survival_function utility function from the utilitary.R file.

One could also use the survfit function in the survival package (Therneau 2001) in adding IPCW
weights for treated and control group and specify the rmean argument equal to 𝜏 in the corresponding
summary function:

This alternative approach for IPCW Kaplan-Meier would also be valid for IPTW and IPTW-IPCW
Kaplan-Meier.

Buckley-James based estimator

The function BJ estimates 𝜃RMST by implementing the Buckley-James estimator as in Equation 31. It
uses two functions available in the utilitary.R file, namely Q_t_hat and Q_Y.

IPTW Kaplan-Meier

The function IPTW_Kaplan_meier implements the IPTW-KM estimator in Equation 39. It uses the
estimate_propensity_score function from the utilitary.R.

G-formula

We implement two versions of the G-formula: g_formula_T_learner and g_formula_S_learner.
In g_formula_T_learner, separate models estimate survival curves for treated and control groups,
whereas g_formula_S_learner uses a single model incorporating both covariates and treatment
status to estimate survival time. The latter approach is also available in the RISCA package but is
limited to Cox models.

IPTW-IPCW Kaplan-Meier
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The IPTW_IPCW_Kaplan_meier function implements the IPTW-IPCW Kaplan Meier estimator from
Equation 41. It uses the utilitary functions from the utilitary.R file estimate_propensity_score
and estimate_survival_function to estimate the nuisance parameters, and the function
adjusted.KM which computes an adjusted Kaplan Meier estimator using the appropriate weight.

IPTW-BJ estimator

The IPTW_BJ implements the IPTW-BJ estimator in Equation 42. It uses the utilitary functions,
from the utilitary.R file, estimate_propensity_score, Q_t_hat and Q_Y to estimate the nuisance
parameters.

AIPTW-AIPCW

The AIPTW_AIPCW function implements the AIPTW_AIPCW estimator in Equation 43 using the
utilitary function from the utilitary.R file estimate_propensity_score, Q_t_hat, Q_Y, and
estimate_survival_function to estimate the nuisance parameters.

4.3 Available packages

Currently, there are few sustained implementations available for estimating RMST in the presence
of right censoring. Notable exceptions include the packages survRM2 (Hajime et al. 2015), grf
(Tibshirani et al. 2017) and RISCA (Foucher, Le Borgne, and Chatton 2019). Those packages are
implemented in the utilitary.R files.

SurvRM2

The difference in RMST with Unadjusted Kaplan-Meier ̂𝜃𝐾𝑀 (Equation 14) can be obtained using
the function rmst2 which takes as arguments the observed time-to-event, the status, the arm which
corresponds to the treatment and 𝜏.

RISCA

The RISCA package provides several methods for estimating 𝜃RMST. The difference in RMST with
Unadjusted Kaplan-Meier ̂𝜃𝐾𝑀 (Equation 14) can be derived using the survfit function from the
the survival package (Therneau 2001) which estimates Kaplan-Meier survival curves for treated and
control groups, and then the rmst function calculates the RMST by integrating these curves, applying
the rectangle method (type=“s”), which is well-suited for step functions.

The IPTW Kaplan-Meier (Equation 38) can be applied using the ipw.survival and rmst functions.
The ipw.survival function requires user-specified weights (i.e. propensity scores). To streamline
this process, we define the RISCA_iptw function, which combines these steps and utilizes the
estimate_propensity_score from the utilitary.R file.

A single-learner version of the G-formula, as introduced in Section 2.2.1, can be implemented using
the gc.survival function. This function requires as input the conditional survival function which
should be estimated beforehand with a Cox model via the coxph function from the survival package
(Therneau 2001). Specifically, the single-learner approach applies a single Cox model incorporating
both covariates and treatment, rather than separate models for each treatment arm. We provide a
function RISCA_gf that consolidates these steps.

grf

The grf package (Tibshirani et al. 2017) enables estimation of the difference between RMST using
the Causal Survival Forest approach (Cui et al. 2023), which extends the non-parametric causal
forest framework to survival data. The RMST can be estimated with the causal_survival_forest
function, requiring covariates 𝑋, observed event times, event status, treatment assignment, and the
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time horizon 𝜏 as inputs. The average_treatment_effect function then evaluates the treatment
effect based on predictions from the fitted forest.

5 Simulations

We compare the behaviors and performances of the estimators through simulations conducted across
various experiemental contexts. These contexts include scenarios based on RCTs and observational
data, with both independent and dependent censoring. We also use semi-parametric and non-
parametric models to generate censoring and survival times, as well as logistic and nonlinear models
to simulate treatment assignment.

5.1 RCT

Data Generating Process

We generate RCTs with independent censoring (Scenario 1) and conditionally independent censoring
(Scenario 2). We sample 𝑛 iid datapoints (𝑋𝑖, 𝐴𝑖, 𝐶, 𝑇𝑖(0), 𝑇𝑖(1))𝑖∈[𝑛] where 𝑇𝑖(0), 𝑇𝑖(1) and 𝐶 follows
Cox’s models. More specifically, we set

• 𝑋 ∼ 𝒩(𝜇, Σ) where 𝜇 = (1, 1, −1, 1) and Σ = Id4.

• The hazard function of 𝑇 (0) is

𝜆(0)(𝑡|𝑋 ) = 0.01 exp {𝛽⊤0𝑋} where 𝛽0 = (0.5, 0.5, −0.5, 0.5).

• The survival times in the treatment group are given by 𝑇 (1) = 𝑇 (0) + 10.

• The hazard function of the censoring time 𝐶 is simply taken as 𝜆𝐶(𝑡|𝑋 ) = 0.03 in Scenario 1,
and in Scenario 2 as

𝜆𝐶(𝑡|𝑋 ) = 0.03 ⋅ exp {𝛽⊤𝐶𝑋} where 𝛽𝐶 = (0.7, 0.7, −0.25, −0.1).

• The treatment allocation is independent of 𝑋: 𝑒(𝑋 ) = 0.5.

• The threshold time 𝜏 is set to 25.

The descriptive statistics of the two datasets are displayed in Annex (Section 9.1). The graph of the
difference in RMST as a function of 𝜏 for the two scenarii are displayed below; 𝜃RMST is the same in
both setting.
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Estimation of the RMST

For each Scenario, we estimate the difference in RMST using the methods summarized in Section 4.1.
The methods used to estimate the nuisance components are indicated in brackets: either logistic
regression or random forests for propensity scores and either cox models or survival random forests
for survival and censoring models. A naive estimator where censored observations are simply
removed and the survival time is averaged for treated and controls is also provided for a naive
baseline.

Figure 8 shows the distribution of the difference in RMST for 100 simulations in Scenario 1 and
different sample sizes: 500, 1000, 2000, 4000. The true value of 𝜃RMST is indicated by red dotted line.

In this setting, and in accordance with the theory, the simplest estimator (unadjusted KM) performs
just as well as the others, and presents an extremely small bias (as derived in Section 2.1).

The naive estimator is biased, as expected, and the bias in both the G-formula (RISCA) and the manual
G-formula S-learner arises because the treatment effect is additive 𝑇 (1) = 𝑇 (0) + 10 and violates
the assumption that 𝑇 would follow a Cox model in the variables (𝑋 , 𝐴). However, 𝑇 |𝐴 = 𝑎 is a
Cox-model for 𝑎 ∈ {0, 1}, which explain the remarkable performance of G-formula (Cox/T-learners)
and some of the other models based on a Cox estimation of 𝑆.

Other estimators (IPTW KM (Reg.Log), IPCW KM (Cox), IPTW-IPCW KM (Cox & Log.Reg), IPTW-BJ
(Cox & Log.Reg), AIPTW-AIPCW (Cox & Cox & Log.Reg)) involve unnecessary nuisance parameter
estimates, such as propensity scores or censoring models. Despite this, their performance remains
relatively stable in terms of variability, and there are roughly no differences between using (semi-
)parametric or non-parametric estimation methods for nuisance parameters except for IPCW KM
and IPTW-IPCW KM where there is a slight bias when using forest-based methods.

Figure 9 shows the results for the RCT simulation with conditionally independent censoring (Scenario
2). In this setting, the Naive estimator remains biased. Similarly, both the unadjusted Kaplan-Meier
(KM) and its SurvRM2 equivalent, as well as the treatment-adjusted IPTW KM and its RISCA
equivalent, are biased due to their failure to account for dependent censoring. As in Scenario 1,
G-formula (Cox/ S-learner) and its RISCA equivalent also remain biased. The IPCW KM (Cox) is
slightly biased up to 4,000 observations and quite variable due to extreme censoring probabilities.
IPTW-IPCW KM (Cox & Log.Reg.) is not biased but shows high variance. In contrast, the Buckley-
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Figure 8: Results of the ATE for the simulation of a RCT with independent censoring.
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Figure 9: Estimation results of the ATE for the simulation of a RCT with dependent censoring.
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James estimator BJ (Cox) is unbiased even with as few as 500 observations. The BJ estimator also
demonstrates smaller variance than IPCWmethods. G-formula (Cox/ T-learners) and AIPCW-AIPTW
(Cox & Cox & Log.Reg.) estimators seem to perform well, even in small samples. The forest versions
of these estimators seem more biased, except Causal Survival Forest and the AIPTW-AIPCW (Forest).
Notably, all estimators exhibit higher variability compared to Scenario 1.

5.2 Observational data

Data Generating Process

As for Scenarii 1 and 2, we carry out two simulations of an observational study with both independent
and conditional independent censoring. The only difference lies in the simulation of the propensity
score, which is no longer constant. For the simulation, an iid 𝑛-sample (𝑋𝑖, 𝐴𝑖, 𝐶, 𝑇𝑖(0), 𝑇𝑖(1))𝑖∈[𝑛] is
generated as in Section 5.1, except for the treatment allocation process that is given by:

logit(𝑒(𝑋 )) = 𝛽⊤𝐴𝑋 where 𝛽𝐴 = (−1, −1, −2.5, −1),

where we recall that logit(𝑝) = log(𝑝/(1 − 𝑝)). The descriptive statistics for the two observational data
with independent (Obs1) and conditionally independent censoring (Obs2) are displayed in Appendix
(Section 9.2). Note that we did not modify the survival distribution, the target difference in RMST is
thus the same.

[1] "The ground truth for Obs scenario 1 at time 25 is 7.1"

[1] "The ground truth for Obs scenario 2 at #time 25 is 7.1"

Estimation of the RMST

Figure 10 below shows the distribution of the estimators of 𝜃RMST for the observational study with
independent censoring.

In the simulation of an observational study with independent censoring, confounding bias is intro-
duced, setting it apart from RCT simulations. As expected, estimators that fail to adjust for this
bias, such as unadjusted Kaplan-Meier (KM), IPCW KM (Cox), and their equivalents, are biased.
However, estimators like IPTW KM (Log.Reg.), IPTW-IPCW KM (Cox & Log. Reg.) are unbiased,
even if the latter estimate unnecessary nuisance components. Results with IPTW BJ (Cox & Log.Reg)
are extremely variable.

The top-performing estimators in this scenario are G-formula (Cox/ T-learners) and AIPCW-AIPTW
(Cox & Cox & Log.Reg.), which are unbiased even with 500 observations. The former has the lowest
variance. All estimators that use forests to estimate nuisance parameters are biased across sample
sizes from 500 to 8000. Although Causal Survival Forest and AIPW-AIPCW (Forest) are expected to
eventually converge, they remain extremely demanding in terms of sample size. This setting thus
highlights that one should either have an a priori knowledge on the specification of the models or
large sample size.

Figure 11 below shows the distribution of the 𝜃RMST estimates for the observational study with
conditionally independent censoring. The red dashed line represents the true 𝜃RMST for 𝜏 = 25.

In the simulation of an observational study with conditionally independent censoring, estimators
that do not account for both censoring and confounding bias, such as KM, IPCW KM, IPTW KM, and
their package equivalents, are biased. The top-performing estimators in this scenario are G-formula
(Cox/ T-learners) and AIPCW-AIPTW (Cox & Cox & Log.Reg.), which are unbiased even with 500
observations. The former has the lowest variance as expected, see Section 2.2.1. Surprisingly, the
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Figure 10: Estimation results of the ATE for the simulation of an observational study with independent
censoring.
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Figure 11: Estimation results of the ATE for the simulation of an observational study with dependent
censoring.
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G-formula (Cox/S-learner) and its equivalent from the RISCA package perform quite competitively,
showing only a slight bias despite the violation of the proportional hazards assumption. All estimators
that use forests to estimate nuisance parameters are biased across sample sizes from 500 to 8000.
Although Causal Survival Forest and AIPTW-AIPCW (Forest) are expected to eventually converge,
they remain extremely demanding in terms of sample size.

5.3 Mispecification of nuisance components

Data Generating Process

We generate an observational study with covariate interactions and conditionally independent
censoring. The objective is to assess the impact of misspecifying nuisance components; specifically,
we will use models that omit interactions to estimate these components. This approach enables us
to evaluate the robustness properties of various estimators. In addition, in this setting forest based
methods are expected to behave better.

We generate 𝑛 samples (𝑋𝑖, 𝐴𝑖, 𝐶, 𝑇𝑖(0), 𝑇𝑖(1)) as follows:

• 𝑋 ∼ 𝒩(𝜇, Σ) and 𝜇 = (0.5, 0.5, 0.7, 0.5), Σ = Id4.

• The hazard function of 𝑇 (0) is given by

𝜆(0)(𝑡|𝑋 ) = exp{𝛽⊤0𝑌 } where 𝛽0 = (0.2, 0.3, 0.1, 0.1, 1, 0, 0, 0, 0, 1),
and 𝑌 = (𝑋2

1 , 𝑋
2
2 , 𝑋2

3 , 𝑋2
4 , 𝑋1𝑋2, 𝑋1𝑋3, 𝑋1𝑋4, 𝑋2𝑋3, 𝑋2𝑋4, 𝑋3𝑋4).

• The distribution of 𝑇 (1) is the one of 𝑇 (0) but shifted: 𝑇 (1) = 𝑇 (0) + 1.

• The hazard function of 𝐶 is given by

𝜆𝐶(𝑡|𝑋 ) = exp{𝛽⊤𝐶𝑌 } where 𝛽𝐶 = (0.05, 0.05, −0.1, 0.1, 0, 1, 0, −1, 0, 0).

• The propensity score is

logit(𝑒(𝑥)) = 𝛽⊤𝐴𝑌 where 𝛽𝐴 = (0.05, −0.1, 0.5, −0.1, 1, 0, 1, 0, 0, 0).

When the model is well-specified, the full vector (𝑋 , 𝑌 ) is given as an input of the nuisance pa-
rameter models. When it is not, only 𝑋 and the first half of 𝑌 corresponding to (𝑋2

1 , 𝑋
2
2 , 𝑋2

3 , 𝑋2
4 )

is given as an input.

The descriptive statistics are given in Appendix (Section 9.3).

[1] "The ground truth for mis scenario at time 0.45 is 0.26"

Estimation of the RMST

First, we estimate 𝜃RMST without any model misspecification to confirm the consistency of the
estimators under correctly specified nuisance models. More specifically, it means that for parametric
propensity score models, semi-parametric censoring and survival models, we use models including
interactions and squared assuming knowledge on the data generating process.

Next, we introduce misspecification individually for the treatment model, censoring model, and
outcome model (Figure 13), i.e., we use models without interaction to estimate parametric and
semi-parametric nuisance components while the data are generated with interactions.
We further examine combined misspecifications for pairs of models: treatment and censoring,
treatment and outcome, and outcome and censoring. Finally, we assess the impact of misspecifying
all nuisance models simultaneously (Figure 14).
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Figure 12: Estimation results of the ATE for the simulation of an observational study with dependent
censoring and non linear relationships.

When there is no misspecification in Figure 12, as expected, IPTW-BJ (Cox & Log.Reg), G-formula
(Cox/ T-learners) and AIPTW-AIPCW (Cox & Cox & Reg.Log) are unbiased. IPTW-IPCW KM (Cox
& Log.Reg) exhibits a bias but seems to converge at larger sample size. Regarding forest-based
methods, IPTW-BJ (Forest), AIPTW-AIPCW (Forest) and Causal Survival Forest estimate accurately
the difference in RMST. Surprisingly, G-formula (Forest/ T-learners), G-formula (Forest/ S-learner)
and IPTW-IPCW KM (Forest) exhibit small bias but are expected to eventually converge at large
sample size.

Figure 13 shows that AIPTW-AIPCW (Cox & Cox & Reg.Log) is convergent when there is one
nuisance misspecification. In contrary, the other estimators are biased when one of its nuisance
parameter is misspecified.

Figure 14 shows that, as expected, when all nuisance models are misspecified, all estimators exhibit
bias. AIPTW-AIPCW (Cox & Cox & Reg.Log) seems to converge in case where either the outcome
and censoring models, or the treatment and censoring models are misspecificed which deviates from
initial expectations. It was anticipated that AIPTW-AIPCW would converge solely when both the
censoring and treatment models were misspecified.

6 Conclusion

Based on the simulations and theoretical results, it might be advisable to stay away from the IPCW
and IPTW-IPCW estimators, as they often exhibit excessive variability. Instead, we recommend
implementing BJ which seems like a more stable transformation as IPCW, as well as Causal Survival
Forest, G-formula (T-learners), IPTW-BJ, and AIPTW-AIPCW in both their Cox, Logistic Regression
and forest versions. By qualitatively combining the results from these more robust estimators, we
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Figure 13: Estimation results of the ATE for an observational study with dependent censoring in
case of a single misspecification.
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Figure 14: Estimation results of the ATE for an observational study with dependent censoring in
case of a two or more misspecifications.
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can expect to gain a fairly accurate understanding of the treatment effect.

It is important to note that our simulations utilize large sample sizes with relatively simple relation-
ships, which may not fully capture the complexity of real-world scenarios. In practice, most survival
analysis datasets tend to be smaller and more intricate, meaning the stability of certain estimators
observed in our simulations may not generalize to real-world applications. Testing these methods
on real-world datasets would provide a more comprehensive evaluation of their performance in
practical settings.

An interesting direction for future work would be to focus on variable selection. Indeed, there is no
reason to assume that the variables related to censoring should be the same as those linked to survival
or treatment allocation. We could explore differentiating these sets of variables and study the impact
on the estimators’ variance. Similarly to causal inference settings without survival data, we might
expect, for instance, that adding precision variables—-those solely related to the outcome—-could
reduce the variance of the estimators.

Additionally, the estimators of the Restricted Mean Survival Time (RMST) provide a valuable alterna-
tive to the Hazard Ratio. The analysis and code provided with this article enables further exploration
of the advantages of the estimators of RMST for causal analysis in survival studies. This could lead
to a deeper understanding of how these estimators can offer more stable and interpretable estimates
of treatment effects, particularly in complex real-world datasets.

7 Disclosure

This study was funded by Sanofi. Charlotte Voinot and Bernard Sebastien are Sanofi employees and
may hold shares and/or stock options in the company. Clément Berenfeld, Imke Mayer and Julie
Josse have nothing to disclose.
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8 Appendix A: Proofs

8.1 Proofs of Section 2.1

Proof. (Proposition 2.1). Consistency is a trivial consequence of the law of large number and the
identity 11. To show that 𝑆KM is unbiased, let us introduce ℱ𝑘 be the filtration generated by the set
of variables

{𝐴𝑖, 𝕀{ ̃𝑇𝑖 = 𝑡𝑗}, 𝕀{ ̃𝑇𝑖 = 𝑡𝑗, Δ𝑖 = 1} | 𝑗 ∈ [𝑘], 𝑖 ∈ [𝑛]}.
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which corresponds to the known information up to time 𝑡𝑘, so that 𝐷𝑘(𝑎) is ℱ𝑘-measurable but 𝑁𝑘(𝑎)
is ℱ𝑘−1-measurable. One can write that, for 𝑘 2

𝔼[𝕀{ ̃𝑇𝑖 = 𝑡𝑘, Δ𝑖 = 1, 𝐴𝑖 = 𝑎} | ℱ𝑘−1] = 𝔼[𝕀{ ̃𝑇𝑖 = 𝑡𝑘, Δ𝑖 = 1, 𝐴𝑖 = 𝑎} | 𝕀{ ̃𝑇𝑖 𝑡𝑘}, 𝐴𝑖]
= 𝕀{𝐴𝑖 = 𝑎}𝔼[𝕀{𝑇𝑖 = 𝑡𝑘, 𝐶𝑖 𝑡𝑘} | 𝕀{𝑇𝑖 𝑡𝑘, 𝐶𝑖 𝑡𝑘}, 𝐴𝑖]
= 𝕀{𝐴𝑖 = 𝑎}𝕀{𝐶𝑖 𝑡𝑘}𝔼[𝕀{𝑇𝑖 = 𝑡𝑘} | 𝕀{𝑇𝑖 𝑡𝑘}, 𝐴𝑖]

= 𝕀{ ̃𝑇𝑖 𝑡𝑘, 𝐴𝑖 = 𝑎}
(
1 −

𝑆(𝑎)(𝑡𝑘)
𝑆(𝑎)(𝑡𝑘−1))

,

where we used that 𝑇𝑖(𝑎) is idependant from 𝐴𝑖 by Assumption 5. We then easily derive from this
that

𝔼 [(1 −
𝐷𝑘(𝑎)
𝑁𝑘(𝑎))

𝕀{𝑁𝑘(𝑎) > 0}
|||ℱ𝑘−1] =

𝑆(𝑎)(𝑡𝑘)
𝑆(𝑎)(𝑡𝑘−1)

𝕀{𝑁𝑘(𝑎) > 0},

and then that

𝔼 [𝑆KM(𝑡𝑘|𝐴 = 𝑎)||ℱ𝑘−1] =
𝑆(𝑎)(𝑡𝑘)
𝑆(𝑎)(𝑡𝑘−1)

𝑆KM(𝑡𝑘−1|𝐴 = 𝑎) + 𝑂(𝕀{𝑁𝑘(𝑎) = 0}),

By induction, we easily find that

𝔼[𝑆KM(𝑡|𝐴 = 𝑎)] = ∏
𝑡𝑗𝑡

𝑆(𝑎)(𝑡𝑗)
𝑆(𝑎)(𝑡𝑗−1)

+ 𝑂
(
∑
𝑡𝑗𝑡

ℙ(𝑁𝑗(𝑎) = 0)
)

= 𝑆(𝑎)(𝑡) + 𝑂(ℙ(𝑁𝑘(𝑎) = 0))

where 𝑡𝑘 is the greatest time such that 𝑡𝑘 𝑡.

Proof. (Proposition 2.2). The asymptotic normality is a mere consequence of the joint asymptotic
normality of (𝑁𝑘(𝑎), 𝐷𝑘(𝑎))𝑡𝑘𝑡 with an application of the 𝛿-method. To access the asymptotic variance,
notice that, using a similar reasonning as in the previous proof:

𝔼[(1 − 𝐷𝑘(𝑎)/𝑁𝑘(𝑎))2|ℱ𝑘−1] = 𝔼[1 − 𝐷𝑘(𝑎)/𝑁𝑘(𝑎)|ℱ𝑘−1(𝑎)]2 +
1

𝑁𝑘(𝑎)2
Var(𝐷𝑘(𝑎)|ℱ𝑘−1)

= 𝑠2𝑘 (𝑎) +
𝑠𝑘(𝑎)(1 − 𝑠𝑘(𝑎))

𝑁𝑘(𝑎)
𝕀{𝑁𝑘(𝑎) > 0} + 𝑂(𝕀{𝑁𝑘(𝑎) = 0}).

Now we know that 𝑁𝑘(𝑎) = 𝑛𝑟𝑘(𝑎) + √𝑛𝑂ℙ(1), with the 𝑂ℙ(1) having uniformly bounded moments.
So that we deduce that

𝔼[(1 − 𝐷𝑘(𝑎)/𝑁𝑘(𝑎))2|ℱ𝑘−1] = 𝑠2𝑘 (𝑎) +
𝑠𝑘(𝑎)(1 − 𝑠𝑘(𝑎))

𝑛𝑟𝑘(𝑎)
+

1
𝑛3/2

𝑂ℙ(1),

where 𝑂ℙ(1) has again bounded moments. Using this identity, we find that

𝑛Var𝑆KM(𝑡|𝐴 = 𝑎) = 𝑛 (𝔼𝑆KM(𝑡|𝐴 = 𝑎)2 − 𝑆(𝑎)(𝑡)2)

= 𝑛𝑆(𝑎)(𝑡)2
(
𝔼
[
∏
𝑡𝑘𝑡

(1 +
1
𝑛
1 − 𝑠𝑘(𝑎)
𝑠𝑘(𝑎)𝑟𝑘(𝑎)

+
1

𝑛3/2
𝑂ℙ(1))]

− 1
)
.

Expending the product and using that the 𝑂ℙ(1)’s have bounded moments, we finally deduce that

𝔼
[
∏
𝑡𝑘𝑡

(1 +
1
𝑛
1 − 𝑠𝑘(𝑎)
𝑠𝑘(𝑎)𝑟𝑘(𝑎)

+
1

𝑛3/2
𝑂ℙ(1))]

− 1 =
1
𝑛
∑
𝑡𝑘𝑡

1 − 𝑠𝑘(𝑎)
𝑠𝑘(𝑎)𝑟𝑘(𝑎)

+
1

𝑛3/2
𝑂(1),

𝑛Var𝑆KM(𝑡|𝐴 = 𝑎) = 𝑉KM(𝑡|𝐴 = 𝑎) + 𝑂(𝑛−1/2),

which is what we wanted to show.
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8.2 Proofs of Section 2.2

Proof. (Proposition 2.5). Assumption 17 allows the tranformation to be well-defined. Furthermore, it
holds

𝐸[𝑇 ∗
IPCW|𝐴 = 𝑎, 𝑋] = 𝐸

[
Δ𝜏 × ̃𝑇 ∧ 𝜏

𝐺( ̃𝑇 ∧ 𝜏 |𝐴, 𝑋 )

|
|
|
𝐴 = 𝑎, 𝑋

]

= 𝐸 [
Δ𝜏 × 𝑇 (𝑎) ∧ 𝜏

𝐺(𝑇 (𝑎) ∧ 𝜏 |𝐴, 𝑋 )
|||𝐴 = 𝑎, 𝑋]

= 𝐸 [𝐸 [
𝕀{𝑇 (𝑎) ∧ 𝜏 𝐶} × 𝑇 (𝑎) ∧ 𝜏

𝐺(𝑇 (𝑎) ∧ 𝜏 |𝐴, 𝑋 )
|||𝐴, 𝑋 , 𝑇 (1)]

|||𝐴 = 𝑎, 𝑋]

= 𝐸 [𝑇 (𝑎) ∧ 𝜏 |𝐴 = 𝑎, 𝑋]
= 𝐸 [𝑇 (𝑎) ∧ 𝜏 |𝑋] .

We used in the second equality that on the event {Δ𝜏 = 1, 𝐴 = 𝑎}, it holds ̃𝑇 ∧ 𝜏 = 𝑇 ∧ 𝜏 = 𝑇 (𝑎) ∧ 𝜏. We
used in the fourth equality that 𝐺(𝑇 (𝑎) ∧ 𝜏 |𝐴, 𝑋 ) = 𝐸[𝕀{𝑇 (𝑎) ∧ 𝜏 𝐶}|𝑋 , 𝑇 (𝑎), 𝐴] thanks to Assumption
16, and in the last one that 𝐴 is idependent from 𝑋 and 𝑇 (𝑎) thanks to Assumption 5.

Proof. (Proposition 2.6). Similarly to the computations done in the proof of Proposition 2.5, it is easy
to show that

𝔼 [
Δ𝜏
𝑖

𝐺( ̃𝑇 ∧ 𝜏 |𝑋 , 𝐴)
𝕀( ̃𝑇𝑖 = 𝑡𝑘, 𝐴 = 𝑎)] = ℙ(𝐴 = 𝑎)ℙ(𝑇 (𝑎) = 𝑡𝑘),

and likewise that

𝔼 [
Δ𝜏
𝑖

𝐺( ̃𝑇 ∧ 𝜏 |𝑋 , 𝐴)
𝕀( ̃𝑇𝑖 𝑡𝑘, 𝐴 = 𝑎)] = ℙ(𝐴 = 𝑎)ℙ(𝑇 (𝑎) 𝑡𝑘),

so that 𝑆IPCW(𝑡) converges almost surely towards the product limit

∏
𝑡𝑘𝑡

(1 −
ℙ(𝑇 (𝑎) = 𝑡𝑘)
ℙ(𝑇 (𝑎) 𝑡𝑘) )

= 𝑆(𝑎)(𝑡),

yielding strong consistency. Asymptotic normality is straightforward.

Proof. (Proposition 2.7). There holds

𝔼[𝑇 ∗
BJ|𝑋 , 𝐴 = 𝑎] = 𝔼 [Δ

𝜏𝑇 (𝑎) ∧ 𝜏 + (1 − Δ𝜏)
𝔼[𝑇 ∧ 𝜏 × 𝕀{𝑇 ∧ 𝜏 > 𝐶}|𝐶, 𝐴, 𝑋]

ℙ(𝑇 > 𝐶|𝐶, 𝐴, 𝑋 )
|||𝑋 , 𝐴 = 𝑎]

= 𝔼[Δ𝜏𝑇 (𝑎) ∧ 𝜏 |𝑋 ] + 𝔼 [𝕀{𝑇 ∧ 𝜏 > 𝐶}
𝔼[𝑇 ∧ 𝜏 × 𝕀{𝑇 ∧ 𝜏 > 𝐶}|𝐶, 𝐴, 𝑋]

𝔼[𝕀{𝑇 ∧ 𝜏 𝐶}|𝐶, 𝐴, 𝑋]
|||𝑋 , 𝐴 = 𝑎]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(⋆)

.

Now we easily see that conditionning wrt 𝑋 in the second term yields

(⋆) = 𝔼 [𝔼[𝑇 ∧ 𝜏 × 𝕀{𝑇 ∧ 𝜏 > 𝐶}|𝐶, 𝐴, 𝑋]||𝑋 , 𝐴 = 𝑎]
= 𝔼[(1 − Δ𝜏)𝑇 ∧ 𝜏 |𝑋 , 𝐴 = 𝑎]
= 𝔼[(1 − Δ𝜏)𝑇 (𝑎) ∧ 𝜏 |𝑋 ],

ending the proof.
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Proof. (Theorem 2.1). We let 𝑇 ∗ = Δ𝜏𝜙1 + (1 − Δ𝜏)𝜙0 be a transformation of the form Equation 20.
There holds

𝔼[(𝑇 ∗ − 𝑇 ∧ 𝜏)2] = 𝔼[Δ𝜏(𝜙1 − 𝑇 ∧ 𝜏)2] + 𝔼[(1 − Δ𝜏)(𝜙0 − 𝑇 ∧ 𝜏)2].

The first term is non negative and is zero for the BJ transformation. Since 𝜙0 is a function of ( ̃𝑇 , 𝑋 , 𝐴)
and that ̃𝑇 = 𝐶 on {Δ𝜏 = 0}, the second term can be rewritten in the following way. We let 𝑅 be a
generic quantity that does not depend on 𝜙0.

𝔼[(1 − Δ𝜏)(𝜙0 − 𝑇 )2] = 𝔼 [𝕀{𝑇 ∧ 𝜏 > 𝐶}𝜙20 − 2𝕀{𝑇 ∧ 𝜏 > 𝐶}𝜙0𝑇 ∧ 𝜏] + 𝑅

= 𝔼 [ℙ(𝑇 ∧ 𝜏 > 𝐶|𝐶, 𝐴, 𝑋 )𝜙20 − 2𝔼[𝑇 ∧ 𝜏𝕀{𝑇 ∧ 𝜏 > 𝐶}|𝐶, 𝐴, 𝑋]𝜙0] + 𝑅

= 𝔼
[
ℙ(𝑇 ∧ 𝜏 > 𝐶|𝐶, 𝐴, 𝑋 )(𝜙0 −

𝔼[𝑇 ∧ 𝜏𝕀{𝑇 ∧ 𝜏 > 𝐶}|𝐶, 𝐴, 𝑋]
ℙ(𝑇 ∧ 𝜏 > 𝐶|𝐶, 𝐴, 𝑋 ) )

2

]
+ 𝑅.

Now the first term in the right hand side is always non-negative, and is zero for the BJ tranformation.

8.3 Proofs of Section 3.1

Proof. (Proposition 3.1). The fact that it is strongly consistent and asymptotically normal is again a
simple application of the law of large number and of the 𝛿-method. We indeed find that, for 𝑡𝑘 𝜏

𝔼 [
1

𝑒(𝑋𝑖)
1{ ̃𝑇𝑖 = 𝑡𝑘, Δ𝑖 = 1, 𝐴𝑖 = 1}] = 𝔼 [

𝐴𝑖
𝑒(𝑋𝑖)

1{𝑇𝑖 = 𝑡𝑘, 𝐶𝑖 𝑡𝑘}]

= 𝔼 [𝔼 [
𝐴𝑖

𝑒(𝑋𝑖)
1{𝑇𝑖 = 𝑡𝑘, 𝐶𝑖 𝑡𝑘}

|||𝑋𝑖]]

= 𝔼 [𝔼 [
𝐴𝑖

𝑒(𝑋𝑖)
|||𝑋𝑖]ℙ(𝑇𝑖 = 𝑡𝑘|𝑋𝑖)ℙ(𝐶𝑖 𝑡𝑘)]

= ℙ(𝑇𝑖 = 𝑡𝑘)ℙ(𝐶𝑖 𝑡𝑘),

where we used that 𝐴 is independent from 𝑇 conditionnaly on 𝑋, and that 𝐶 is independent from
everything. Likewise, one would get that

𝔼 [
1

𝑒(𝑋𝑖)
1{ ̃𝑇𝑖 𝑡𝑘, 𝐴𝑖 = 1}] = = ℙ(𝑇𝑖 𝑡𝑘)ℙ(𝐶𝑖 𝑡𝑘).

Similar computations hold for 𝐴 = 0, ending the proof.

8.4 Proofs of Section 3.2

Proof. (Proposition 3.2). On the event {Δ𝜏 = 1, 𝐴 = 1}, there holds ̃𝑇 ∧ 𝜏 = 𝑇 ∧ 𝜏 = 𝑇 (1) ∧ 𝜏, whence we
find that,

𝔼[𝑇 ∗
IPCW|𝑋 , 𝐴 = 1] = 𝔼 [

𝐴
𝑒(𝑋 )

𝕀{𝑇 (1) ∧ 𝜏 𝐶}
𝐺(𝑇 (1) ∧ 𝜏 |𝑋 , 𝐴)

𝑇 (1) ∧ 𝜏
|||𝑋]

= 𝔼 [
𝐴

𝑒(𝑋 )
𝔼 [

𝕀{𝑇 (1) ∧ 𝜏 𝐶}
𝐺(𝑇 (1) ∧ 𝜏 |𝑋 , 𝐴)

|||𝑋 , 𝐴, 𝑇 (1)] 𝑇 (1) ∧ 𝜏
|||𝑋]

= 𝔼 [
𝐴

𝑒(𝑋 )
𝑇 (1) ∧ 𝜏

|||𝑋]

= 𝔼 [𝑇 (1) ∧ 𝜏|𝑋] ,

and the same holds on the event 𝐴 = 0.
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Proof. (Proposition 3.3). By consistency of 𝐺(⋅|𝑋 , 𝐴) and 𝑒 and by continuity, it suffices to look at the
asymptotic behavior of the oracle estimator

𝜃 ∗IPTW−IPCW =
1
𝑛

𝑛
∑
𝑖=1(

𝐴𝑖
𝑒(𝑋𝑖)

−
1 − 𝐴𝑖

1 − 𝑒(𝑋𝑖))
Δ𝜏
𝑖

𝐺( ̃𝑇𝑖 ∧ 𝜏 |𝐴𝑖, 𝑋𝑖)
̃𝑇𝑖 ∧ 𝜏 .

The later is converging almost towards its mean, which, following similar computations as in the
previous proof, write

𝔼 [(
𝐴

𝑒(𝑋 )
−

1 − 𝐴
1 − 𝑒(𝑋 ))

Δ𝜏

𝐺( ̃𝑇 ∧ 𝜏 |𝐴, 𝑋 )
̃𝑇 ∧ 𝜏] = 𝔼 [(

𝐴
𝑒(𝑋 )

−
1 − 𝐴

1 − 𝑒(𝑋 ))
𝑇 ∧ 𝜏]

= 𝔼 [𝑇 (1) ∧ 𝜏] − 𝔼 [𝑇 (0) ∧ 𝜏] .

Proof. (Proposition 3.4). Asymptotic normality comes from a mere application of the 𝛿-method, while
strong consistency follows from the law of large number and the follozing computations. Like for
the proof of Proposition 2.6, one find, by first conditionning wrt 𝑋, 𝐴, 𝑇 (𝑎), that, for 𝑡𝑘 𝜏,

𝔼 [(
𝐴

𝑒(𝑋 )
+

1 − 𝐴
1 − 𝑒(𝑋 ))

Δ𝜏

𝐺( ̃𝑇 ∧ 𝜏 |𝐴, 𝑋 )
𝕀{ ̃𝑇 = 𝑡𝑘, 𝐴 = 𝑎}] = ℙ(𝑇 (𝑎) = 𝑡𝑘)

and likewise that

𝔼 [(
𝐴

𝑒(𝑋 )
+

1 − 𝐴
1 − 𝑒(𝑋 ))

Δ𝜏

𝐺( ̃𝑇 ∧ 𝜏 |𝐴, 𝑋 )
𝕀{ ̃𝑇 𝑡𝑘, 𝐴 = 𝑎}] = ℙ(𝑇 (𝑎) 𝑡𝑘)

so that indeed 𝑆∗IPTW−IPCW(𝑡|𝐴 = 𝑎) converges almost surely towards 𝑆(𝑎)(𝑡).

Proof. (Proposition 3.5). We write

𝔼[𝑇 ∗
IPTW−BJ|𝑋 , 𝐴 = 1] = 𝔼 [

𝐴
𝑒(𝑋 )

Δ𝜏 × ̃𝑇 ∧ 𝜏
|||𝑋] + 𝔼 [

𝐴
𝑒(𝑋 )

(1 − Δ𝜏)𝑄𝑆( ̃𝑇 ∧ 𝜏 |𝐴, 𝑋 )
|||𝑋] .

On the event {Δ𝜏 = 1, 𝐴 = 1}, there holds ̃𝑇 ∧ 𝜏 = 𝑇 ∧ 𝜏 = 𝑇 (1) ∧ 𝜏, whence we find that the first term
on the the right hand side is equal to

𝔼 [
𝐴

𝑒(𝑋 )
Δ𝜏 × ̃𝑇 ∧ 𝜏

|||𝑋] = 𝔼 [
𝐴

𝑒(𝑋 )
Δ𝜏 × 𝑇 (1) ∧ 𝜏

|||𝑋]

= 𝔼 [Δ𝜏 × 𝑇 (1) ∧ 𝜏|𝑋] .

For the second term in the right hand side, notice that on the event {Δ𝜏 = 0, 𝐴 = 1}, there holds
̃𝑇 = 𝐶 < 𝑇 (1) ∧ 𝜏, so that

𝔼 [
𝐴

𝑒(𝑋 )
𝕀{𝐶 < 𝑇 (1) ∧ 𝜏 }

𝔼[𝑇 (1) ∧ 𝜏 × 𝕀{𝐶 < 𝑇 (1) ∧ 𝜏 }|𝑋 , 𝐴, 𝐶]
ℙ(𝐶 < 𝑇 (1) ∧ 𝜏 |𝐶, 𝑋 , 𝐴)

|||𝑋]

= 𝔼 [
𝐴

𝑒(𝑋 )
𝔼[𝑇 (1) ∧ 𝜏 × 𝕀{𝐶 < 𝑇 (1) ∧ 𝜏 }|𝑋 , 𝐴, 𝐶]

|||𝑋]

= 𝔼 [𝑇 (1) ∧ 𝜏 × 𝕀{𝐶 < 𝑇 (1) ∧ 𝜏 }|𝑋]
= 𝔼 [(1 − Δ𝜏)𝑇 (1) ∧ 𝜏|𝑋] ,

and the sane holds on the event {𝐴 = 0}, which ends the proof.
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Proof. (Proposition 3.6). By consistency of 𝐺(⋅|𝑋 , 𝐴) and 𝑒 and by continuity, it suffices to look at the
asymptotic behavior of the oracle estimator

𝜃 ∗IPTW−BJ =
1
𝑛

𝑛
∑
𝑖=1(

𝐴𝑖
𝑒(𝑋𝑖)

−
1 − 𝐴𝑖

1 − 𝑒(𝑋𝑖))
(Δ𝜏

𝑖 × ̃𝑇𝑖 ∧ 𝜏 + (1 − Δ𝜏
𝑖 )𝑄𝑆( ̃𝑇𝑖 ∧ 𝜏 |𝐴𝑖, 𝑋𝑖)) .

The later is converging almost towards its mean, which, following similar computations as in the
previous proof, is simply equal to the difference in RMST.

Proof. (Proposition 3.7). We can write that

Δ∗
QR =

𝐴
𝑝(𝑋 )

(𝑇 ∗
DR(𝐹 , 𝑅) − 𝜈(𝑋 , 1)) + 𝜈(𝑋 , 1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(A)

−

⎛
⎜
⎜
⎜
⎜
⎝

1 − 𝐴
1 − 𝑝(𝑋 )

(𝑇 ∗
DR(𝐹 , 𝑅) − 𝜈(𝑋 , 0)) + 𝜈(𝑋 , 0)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(B)

⎞
⎟
⎟
⎟
⎟
⎠

.

Focusing on term (A), we easily find that

𝔼[(A)|𝑋 ] = 𝔼 [
𝐴

𝑝(𝑋 )
(𝑇 ∗

DR(𝐹 , 𝑅) − 𝜈(𝑋 , 1)) + 𝜈(𝑋 , 1)
|||𝑋]

=
𝑒(𝑋 )
𝑝(𝑋 )

(𝜇(𝑋 , 1) − 𝜈(𝑋 , 1)) + 𝜈(𝑋 , 1).

Where we used that 𝑇 ∗
DR(𝐹 , 𝑅) is a censoring unbiased transform when 𝐹 = 𝐺 or 𝑅 = 𝑆. Now we see

that if 𝑝(𝑋 ) = 𝑒(𝑋 ), then

𝔼[(A)|𝑋 ] = 𝜇(𝑋 , 1) − 𝜈(𝑋 , 1) + 𝜈(𝑋 , 1) = 𝜇(𝑋 , 1),

and if 𝜈(𝑋 , 1) = 𝜇(𝑋 , 1), then

𝔼[(A)|𝑋 ] =
𝑒(𝑋 )
𝑝(𝑋 )

× 0 + 𝜇(𝑋 , 1) = 𝜇(𝑋 , 1).

Likewise, we would show that 𝔼[(B)|𝑋 ] = 𝜇(𝑋 , 0) under either alternative, ending the proof.

9 Appendix B: Descriptive statistics

9.1 RCT

The summary by group of treatment of the generated (observed and unobserved) RCT with indepen-
dent censoring is displayed below:

[1] "Descriptive statistics for group A=0: 1053"

X1 X2 X3 X4
Min. :-1.7349 Min. :-2.5663 Min. :-3.8925 Min. :-2.0360
1st Qu.: 0.3874 1st Qu.: 0.3788 1st Qu.:-1.7245 1st Qu.: 0.4379
Median : 1.0238 Median : 1.0206 Median :-1.0558 Median : 1.0744
Mean : 1.0227 Mean : 1.0285 Mean :-1.0472 Mean : 1.0664
3rd Qu.: 1.7022 3rd Qu.: 1.6939 3rd Qu.:-0.3646 3rd Qu.: 1.7108
Max. : 4.3746 Max. : 4.4499 Max. : 2.5493 Max. : 4.1453

C T1 T0 status
Min. : 0.01707 Min. : 10.00 Min. : 0.0038 Min. :0.000
1st Qu.: 10.15906 1st Qu.: 12.42 1st Qu.: 2.4243 1st Qu.:0.000
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Median : 24.58672 Median : 17.69 Median : 7.6852 Median :1.000
Mean : 35.10085 Mean : 30.75 Mean : 20.7507 Mean :0.698
3rd Qu.: 49.45058 3rd Qu.: 30.54 3rd Qu.: 20.5401 3rd Qu.:1.000
Max. :283.29895 Max. :965.02 Max. :955.0185 Max. :1.000

T_tild
Min. : 0.0038
1st Qu.: 1.9573
Median : 5.3226
Mean :10.1376
3rd Qu.:13.1953
Max. :94.1313

[1] "Descriptive statistics for group A=1: 947"

X1 X2 X3 X4
Min. :-2.8647 Min. :-2.1411 Min. :-4.0319 Min. :-2.5553
1st Qu.: 0.2581 1st Qu.: 0.3464 1st Qu.:-1.5864 1st Qu.: 0.3386
Median : 0.9561 Median : 1.0099 Median :-0.9133 Median : 1.0125
Mean : 0.9466 Mean : 0.9991 Mean :-0.9312 Mean : 1.0299
3rd Qu.: 1.6559 3rd Qu.: 1.6977 3rd Qu.:-0.2499 3rd Qu.: 1.7116
Max. : 4.3198 Max. : 3.7245 Max. : 2.5541 Max. : 3.9869

C T1 T0 status
Min. : 0.03081 Min. : 10.02 Min. : 0.0189 Min. :0.0000
1st Qu.: 9.45254 1st Qu.: 13.17 1st Qu.: 3.1690 1st Qu.:0.0000
Median : 25.31415 Median : 19.68 Median : 9.6783 Median :1.0000
Mean : 34.66363 Mean : 31.99 Mean : 21.9885 Mean :0.5048
3rd Qu.: 46.72254 3rd Qu.: 33.99 3rd Qu.: 23.9901 3rd Qu.:1.0000
Max. :217.99849 Max. :365.43 Max. :355.4287 Max. :1.0000

T_tild
Min. : 0.03081
1st Qu.: 9.45254
Median : 13.22399
Mean : 17.39243
3rd Qu.: 21.17930
Max. :149.40454

Covariates are balanced between groups, and censoring times are the same (independent censoring).
However, there are more censored observations in the treated group (𝐴 = 1) than in the control
group (𝐴 = 0). This is due to the higher instantaneous hazard of the event in the treated group (with
𝑇1 = 𝑇0 + 10) compared to the constant hazard of censoring.

The summary of the generated (observed and unobserved) RCT with conditionally independent
censoring stratified by treatment is displayed below.

[1] "Descriptive statistics for group A=0: 1006"

X1 X2 X3 X4
Min. :-1.8983 Min. :-2.6673 Min. :-4.0236 Min. :-2.2433
1st Qu.: 0.4118 1st Qu.: 0.3122 1st Qu.:-1.7435 1st Qu.: 0.3677
Median : 1.0311 Median : 0.9990 Median :-0.9930 Median : 1.0121
Mean : 1.0264 Mean : 1.0227 Mean :-1.0016 Mean : 1.0204
3rd Qu.: 1.7015 3rd Qu.: 1.7126 3rd Qu.:-0.2952 3rd Qu.: 1.6647
Max. : 4.4370 Max. : 4.4759 Max. : 2.0828 Max. : 4.4475
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C T1 T0 status
Min. : 0.00146 Min. : 10.03 Min. : 0.0281 Min. :0.0000
1st Qu.: 2.58160 1st Qu.: 12.60 1st Qu.: 2.6012 1st Qu.:0.0000
Median : 6.71686 Median : 17.26 Median : 7.2615 Median :0.0000
Mean : 13.42545 Mean : 29.69 Mean : 19.6897 Mean :0.4473
3rd Qu.: 16.28881 3rd Qu.: 30.70 3rd Qu.: 20.7009 3rd Qu.:1.0000
Max. :209.00395 Max. :397.44 Max. :387.4447 Max. :1.0000

status_tau T_tild
Min. :0.0000 Min. : 0.00146
1st Qu.:0.0000 1st Qu.: 1.27297
Median :0.0000 Median : 3.37826
Mean :0.4881 Mean : 7.25646
3rd Qu.:1.0000 3rd Qu.: 7.87051
Max. :1.0000 Max. :127.65479

[1] "Descriptive statistics for group A=1: 994"

X1 X2 X3 X4
Min. :-1.9653 Min. :-3.0018 Min. :-3.8764 Min. :-2.2017
1st Qu.: 0.2779 1st Qu.: 0.3366 1st Qu.:-1.6976 1st Qu.: 0.3591
Median : 0.9193 Median : 0.9757 Median :-1.0526 Median : 1.0136
Mean : 0.9680 Mean : 0.9870 Mean :-1.0353 Mean : 1.0163
3rd Qu.: 1.6599 3rd Qu.: 1.6134 3rd Qu.:-0.3524 3rd Qu.: 1.6847
Max. : 3.8066 Max. : 4.1911 Max. : 2.0895 Max. : 4.3685

C T1 T0 status
Min. : 0.0097 Min. : 10.01 Min. : 0.0147 Min. :0.0000
1st Qu.: 3.1894 1st Qu.: 13.07 1st Qu.: 3.0665 1st Qu.:0.0000
Median : 8.6746 Median : 18.91 Median : 8.9100 Median :0.0000
Mean : 17.7391 Mean : 33.09 Mean : 23.0947 Mean :0.2314
3rd Qu.: 20.4410 3rd Qu.: 34.28 3rd Qu.: 24.2818 3rd Qu.:0.0000
Max. :532.6940 Max. :633.48 Max. :623.4836 Max. :1.0000

status_tau T_tild
Min. :0.0000 Min. : 0.00974
1st Qu.:0.0000 1st Qu.: 3.18939
Median :0.0000 Median : 8.67462
Mean :0.2907 Mean : 11.97123
3rd Qu.:1.0000 3rd Qu.: 14.69202
Max. :1.0000 Max. :134.65165

Covariates are balanced between the two groups. However, censoring times differ between groups
due to conditionally independent censoring based on covariates and treatment group. Indeed, the
distribution of 𝐶 is different between the treatment group.

9.2 Observational study with linear relationship

The summary of the generated (observed and unobserved) data set observational study with indepen-
dent censoring stratified by treatment is displayed below to enhance the difference with the other
scenario.

[1] "Descriptive statistics for group A=0: 1109"

X1 X2 X3 X4
Min. :-2.3330 Min. :-1.8751 Min. :-3.26193 Min. :-1.5008
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1st Qu.: 0.5218 1st Qu.: 0.5882 1st Qu.:-1.05047 1st Qu.: 0.4846
Median : 1.2327 Median : 1.2913 Median :-0.53051 Median : 1.1734
Mean : 1.1866 Mean : 1.2613 Mean :-0.52258 Mean : 1.1842
3rd Qu.: 1.8763 3rd Qu.: 1.8910 3rd Qu.: 0.05191 3rd Qu.: 1.8448
Max. : 4.7463 Max. : 4.2293 Max. : 2.18757 Max. : 4.3594

C T1 T0 status
Min. : 0.00037 Min. : 10.01 Min. : 0.0064 Min. :0.0000
1st Qu.: 9.08596 1st Qu.: 12.63 1st Qu.: 2.6296 1st Qu.:0.0000
Median : 23.44589 Median : 17.53 Median : 7.5317 Median :1.0000
Mean : 34.00533 Mean : 30.04 Mean : 20.0356 Mean :0.6943
3rd Qu.: 48.09966 3rd Qu.: 31.93 3rd Qu.: 21.9266 3rd Qu.:1.0000
Max. :251.41596 Max. :491.67 Max. :481.6699 Max. :1.0000

T_tild
Min. : 0.00037
1st Qu.: 1.96940
Median : 5.39172
Mean : 10.32146
3rd Qu.: 12.79874
Max. :168.69106

[1] "Descriptive statistics for group A=1: 891"

X1 X2 X3 X4
Min. :-2.37512 Min. :-2.1902 Min. :-4.5059 Min. :-2.01609
1st Qu.: 0.08916 1st Qu.: 0.1560 1st Qu.:-2.1669 1st Qu.: 0.05362
Median : 0.75965 Median : 0.8066 Median :-1.5974 Median : 0.71811
Mean : 0.75126 Mean : 0.7846 Mean :-1.6236 Mean : 0.71452
3rd Qu.: 1.39138 3rd Qu.: 1.4246 3rd Qu.:-1.0577 3rd Qu.: 1.35626
Max. : 3.87355 Max. : 3.6591 Max. : 0.6806 Max. : 3.97256

C T1 T0 status
Min. : 0.0766 Min. : 10.01 Min. : 0.0071 Min. :0.0000
1st Qu.: 8.9967 1st Qu.: 12.92 1st Qu.: 2.9225 1st Qu.:0.0000
Median : 22.5362 Median : 18.37 Median : 8.3709 Median :0.0000
Mean : 31.6058 Mean : 31.71 Mean : 21.7056 Mean :0.4882
3rd Qu.: 44.9464 3rd Qu.: 33.31 3rd Qu.: 23.3142 3rd Qu.:1.0000
Max. :201.0258 Max. :382.17 Max. :372.1723 Max. :1.0000

T_tild
Min. : 0.0766
1st Qu.: 8.9967
Median : 12.8082
Mean : 16.0926
3rd Qu.: 19.9619
Max. :136.1725

The covariates between the two groups of treatment are unbalanced because of dependent treatment
assignation. The mean of 𝑋1, 𝑋2, 𝑋3 and 𝑋4 is bigger in the control group than in the treated group.
The censoring times have the same distribution (independent censoring). There are more censored
observation in the treated group (A=1) than in the control group (A=0) for the same reason than in
the RCT scenario.

The summary of the generated (observed and unobserved) data set observational study with condi-
tionally independent censoring stratified by treatment is displayed below.
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[1] "Descriptive statistics for group A=0: 1135"

X1 X2 X3 X4
Min. :-2.1274 Min. :-1.6571 Min. :-3.09281 Min. :-1.8423
1st Qu.: 0.5145 1st Qu.: 0.5386 1st Qu.:-1.11137 1st Qu.: 0.5463
Median : 1.1402 Median : 1.1625 Median :-0.57357 Median : 1.2030
Mean : 1.1748 Mean : 1.2001 Mean :-0.52394 Mean : 1.2382
3rd Qu.: 1.8621 3rd Qu.: 1.8824 3rd Qu.: 0.02643 3rd Qu.: 1.9129
Max. : 4.1307 Max. : 4.3984 Max. : 3.41547 Max. : 3.9189

C T1 T0 status
Min. : 0.00205 Min. : 10.00 Min. : 0.0004 Min. :0.0000
1st Qu.: 2.55604 1st Qu.: 12.50 1st Qu.: 2.5008 1st Qu.:0.0000
Median : 6.96852 Median : 17.72 Median : 7.7205 Median :0.0000
Mean : 14.12909 Mean : 30.46 Mean : 20.4648 Mean :0.4793
3rd Qu.: 16.38653 3rd Qu.: 29.98 3rd Qu.: 19.9838 3rd Qu.:1.0000
Max. :199.00909 Max. :501.09 Max. :491.0921 Max. :1.0000

status_tau T_obs e
Min. :0.0000 Min. : 0.00039 Min. :0.0000033
1st Qu.:0.0000 1st Qu.: 1.34819 1st Qu.:0.0263812
Median :1.0000 Median : 3.48376 Median :0.1059645
Mean :0.5119 Mean : 7.46724 Mean :0.2042602
3rd Qu.:1.0000 3rd Qu.: 8.51456 3rd Qu.:0.3137048
Max. :1.0000 Max. :135.08089 Max. :0.9788361

[1] "Descriptive statistics for group A=1: 865"

X1 X2 X3 X4
Min. :-2.5798 Min. :-2.64701 Min. :-4.394 Min. :-2.34523
1st Qu.: 0.1759 1st Qu.: 0.07471 1st Qu.:-2.189 1st Qu.: 0.07272
Median : 0.7802 Median : 0.76465 Median :-1.644 Median : 0.72962
Mean : 0.7726 Mean : 0.73404 Mean :-1.648 Mean : 0.69508
3rd Qu.: 1.3668 3rd Qu.: 1.37752 3rd Qu.:-1.134 3rd Qu.: 1.34778
Max. : 3.4179 Max. : 4.47830 Max. : 1.138 Max. : 3.53681

C T1 T0 status
Min. : 0.0182 Min. : 10.01 Min. : 0.0105 Min. :0.000
1st Qu.: 2.7635 1st Qu.: 13.18 1st Qu.: 3.1771 1st Qu.:0.000
Median : 7.4038 Median : 18.88 Median : 8.8809 Median :0.000
Mean : 14.5227 Mean : 35.30 Mean : 25.2969 Mean :0.178
3rd Qu.: 17.4710 3rd Qu.: 33.06 3rd Qu.: 23.0577 3rd Qu.:0.000
Max. :380.7475 Max. :863.19 Max. :853.1887 Max. :1.000

status_tau T_obs e
Min. :0.0000 Min. : 0.01817 Min. :0.001564
1st Qu.:0.0000 1st Qu.: 2.76351 1st Qu.:0.603723
Median :0.0000 Median : 7.40385 Median :0.857623
Mean :0.2324 Mean : 10.90832 Mean :0.752468
3rd Qu.:0.0000 3rd Qu.: 13.54555 3rd Qu.:0.964409
Max. :1.0000 Max. :140.04319 Max. :0.999832

The covariates between the two groups are unbalanced. The censoring time is dependent on the
covariates also, as the covariates are unbalanced between the two groups, the censoring time is also
unbalanced. In particular, the mean of 𝑋1, 𝑋2, 𝑋3 and 𝑋4 is bigger in the control group than in the
treated group. Also, the number of events is bigger in the control than treated group.
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9.3 Observational study with interaction

X1 X2 X3 X4
Min. :-2.6724 Min. :-2.8608 Min. :-2.92627 Min. :-2.7028
1st Qu.:-0.1854 1st Qu.:-0.1614 1st Qu.:-0.01601 1st Qu.:-0.2035
Median : 0.5083 Median : 0.4781 Median : 0.69895 Median : 0.5130
Mean : 0.5221 Mean : 0.4889 Mean : 0.69275 Mean : 0.5140
3rd Qu.: 1.1920 3rd Qu.: 1.1382 3rd Qu.: 1.38013 3rd Qu.: 1.2303
Max. : 3.8850 Max. : 3.4889 Max. : 3.79283 Max. : 4.3792

tau A T0 T1
Min. :0.5 Min. :0.0000 Min. : 0.00000 Min. : 1.000
1st Qu.:0.5 1st Qu.:0.0000 1st Qu.: 0.03164 1st Qu.: 1.032
Median :0.5 Median :1.0000 Median : 0.18757 Median : 1.188
Mean :0.5 Mean :0.5865 Mean : 0.77911 Mean : 1.779
3rd Qu.:0.5 3rd Qu.:1.0000 3rd Qu.: 0.69832 3rd Qu.: 1.698
Max. :0.5 Max. :1.0000 Max. :68.87148 Max. :69.871

C T_obs T_obs_tau status
Min. : 0.0000 Min. : 0.00000 Min. :0.00000 Min. :0.000
1st Qu.: 0.1453 1st Qu.: 0.05287 1st Qu.:0.05287 1st Qu.:0.000
Median : 0.5355 Median : 0.24785 Median :0.24785 Median :0.000
Mean : 5.8443 Mean : 0.54939 Mean :0.26867 Mean :0.437
3rd Qu.: 1.7237 3rd Qu.: 0.99074 3rd Qu.:0.50000 3rd Qu.:1.000
Max. :2220.3576 Max. :18.47672 Max. :0.50000 Max. :1.000

status_tau censor.status e
Min. :0.0000 Min. :0.000 Min. :0.0000764
1st Qu.:0.0000 1st Qu.:0.000 1st Qu.:0.4171371
Median :1.0000 Median :1.000 Median :0.6044427
Mean :0.6045 Mean :0.563 Mean :0.5928267
3rd Qu.:1.0000 3rd Qu.:1.000 3rd Qu.:0.8245093
Max. :1.0000 Max. :1.000 Max. :0.9999938

The summary of the generated (observed and unobserved) data set complex observational study
(conditionally independent censoring) stratified by treatment is displayed below.

[1] "Descriptive statistics for group A=0: 827"

X1 X2 X3 C
Min. :-2.4572 Min. :-2.86076 Min. :-1.9492 Min. : 0.0001
1st Qu.:-0.2401 1st Qu.:-0.08007 1st Qu.:-0.1292 1st Qu.: 0.1601
Median : 0.4972 Median : 0.63144 Median : 0.4602 Median : 0.5402
Mean : 0.4792 Mean : 0.65492 Mean : 0.4339 Mean : 3.8330
3rd Qu.: 1.1795 3rd Qu.: 1.42315 3rd Qu.: 1.0360 3rd Qu.: 1.7511
Max. : 3.8850 Max. : 3.42233 Max. : 2.8309 Max. :603.7879

T1 T0 status T_obs
Min. : 1.000 Min. : 0.0000 Min. :0.0000 Min. :0.00000
1st Qu.: 1.027 1st Qu.: 0.0266 1st Qu.:0.0000 1st Qu.:0.01867
Median : 1.162 Median : 0.1619 Median :1.0000 Median :0.09428
Mean : 1.698 Mean : 0.6980 Mean :0.6542 Mean :0.28128
3rd Qu.: 1.692 3rd Qu.: 0.6915 3rd Qu.:1.0000 3rd Qu.:0.31235
Max. :41.723 Max. :40.7229 Max. :1.0000 Max. :5.88375

status_tau e
Min. :0.0000 Min. :0.0000764
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1st Qu.:0.0000 1st Qu.:0.2367490
Median :1.0000 Median :0.4479076
Mean :0.7243 Mean :0.4265800
3rd Qu.:1.0000 3rd Qu.:0.5988384
Max. :1.0000 Max. :0.9707041

[1] "Descriptive statistics for group A=1: 1173"

X1 X2 X3 C
Min. :-2.6724 Min. :-2.4416 Min. :-2.9263 Min. : 0.0000
1st Qu.:-0.1461 1st Qu.:-0.2560 1st Qu.: 0.1952 1st Qu.: 0.1315
Median : 0.5185 Median : 0.4078 Median : 0.9093 Median : 0.5335
Mean : 0.5524 Mean : 0.3718 Mean : 0.8753 Mean : 7.2623
3rd Qu.: 1.2016 3rd Qu.: 0.9739 3rd Qu.: 1.6755 3rd Qu.: 1.7117
Max. : 3.7301 Max. : 3.4889 Max. : 3.7928 Max. :2220.3576

T1 T0 status T_obs
Min. : 1.000 Min. : 0.00000 Min. :0.0000 Min. : 0.000041
1st Qu.: 1.035 1st Qu.: 0.03514 1st Qu.:0.0000 1st Qu.: 0.131473
Median : 1.197 Median : 0.19658 Median :0.0000 Median : 0.533500
Mean : 1.836 Mean : 0.83630 Mean :0.2839 Mean : 0.738415
3rd Qu.: 1.700 3rd Qu.: 0.69997 3rd Qu.:1.0000 3rd Qu.: 1.064682
Max. :69.871 Max. :68.87148 Max. :1.0000 Max. :18.476721

status_tau e
Min. :0.00 Min. :0.05582
1st Qu.:0.00 1st Qu.:0.55353
Median :1.00 Median :0.73499
Mean :0.52 Mean :0.71004
3rd Qu.:1.00 3rd Qu.:0.90282
Max. :1.00 Max. :0.99999

The observations are the same than the previous scenario: The covariates and the censoring time
between the two groups are unbalanced. To be able to evaluate the estimators, we need to know the
true 𝜃RMST at time 𝜏.
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